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Fig. 1. Tea diffuses from a teabag into a cup of water. After the teabag is removed, the mixture is stirred with a (glass) rod.

Particle-based simulations have become increasingly popular in real-time
applications due to their efficiency and adaptability, especially for generating
highly dynamic fluid effects. However, the swift and stable simulation of
interactions among distinct fluids continues to pose challenges for current
mixture model techniques. When using a single-mixture flow field to rep-
resent all fluid phases, numerical discontinuities in phase fields can result
in significant losses of dynamic effects and unstable conservation of mass
and momentum. To tackle these issues, we present an advanced implicit
mixture model for smoothed particle hydrodynamics. Instead of relying
on an explicit mixture field for all dynamic computations and phase trans-
fers between particles, our approach calculates phase momentum sources
from the mixture model to derive explicit and continuous velocity phase
fields. We then implicitly obtain the mixture field using a phase-mixture
momentum-mapping mechanism that ensures conservation of incompress-
ibility, mass, and momentum. In addition, we propose a mixture viscosity
model and establish viscous effects between the mixture and individual fluid
phases to avoid instability under extreme inertia conditions. Through a se-
ries of experiments, we show that, compared to existing mixture models, our
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method effectively improves dynamic effects while reducing critical instabil-
ity factors. This makes our approach especially well-suited for long-duration,
efficiency-oriented virtual reality scenarios.
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1 INTRODUCTION
Simulating multiphase flows [Brennen 2005] has gained interest in
the graphics community due to its ability to create distinct diffu-
sion and stratification effects, such as brewing tea bags (Fig. 1) and
crafting cocktails. Simplified mixture models [Manninen et al. 1996]
have been widely adopted to produce stunning visuals [Jiang and
Lan 2021; Ren et al. 2014] at lower computational cost.
Mixture models deal with the coexistence of multiple phases

within a singular discretization unit. A distinctive drift velocity is
leveraged to illustrate the relative motion between the mixture and
individual phases. This movement stems from the multiphase gov-
erning equations, which, in turn, find their roots in the single-phase
Navier-Stokes equations. A significant challenge in this domain
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arises from the fact that many fluid simulation techniques are tai-
lored primarily for single-phase fluids. Designing a suitable method
that can integrate additional sub-discretization unit dynamics com-
putation is far from trivial.

A common workaround to this complexity has been the adoption
of the Local Equilibrium Assumption (LEA) [Jiang et al. 2020; Ren
et al. 2022, 2014]. While the LEA simplifies simulations by forcing
drift states back to non-drift states, enabling compatibility with
existing simulation models, it is not without limitations. Such an
approach can often introduce discontinuities in phase velocities,
compromising the transfer between phases during time integra-
tion. Consequently, this diminishes the dynamism stemming from
multiphase interactions.
Alternatively, energy-based multiphase models have been ex-

plored [Tampubolon et al. 2017; Yang et al. 2015]. Although they
can bypass the challenges of LEA and drift velocity computations
associated with phase-phase interactions, these models often make
concessions in numerical accuracy to align with existing simulation
structures.
Numerical instability is another challenge for multiphase flow

simulation. The standard Smoothed Particle Hydrodynamics (SPH)
strategy [Bender and Koschier 2017] struggles to conserve mass and
momentum using the volume fraction scheme. Jiang et al. [2021]
abandoned LEA for improved dynamic performance but sacrificed
mixture incompressibility and mass conservation.
We propose an implicit mixture model to address dynamic and

stability issues in multiphase flow simulation. We construct inter-
phase momentum sources using no-slip and free-slip conditions
among phases, calculate the change rate of phase velocity fields,
and conserve divergence-free conditions for mixture flow and nu-
merical consistency for phase velocities. To avoid instability caused
by excessive drift velocities, we introduce a mixture viscosity model
to smoothly limit drift velocity while maintaining conservation. The
main contributions of our implicit mixture model are:

• An analytic form of interphase momentum sources describing
how the mixture flow affects the movement of individual fluid
phases;

• A phase-mixture momentum mapping mechanism that pre-
serves the incompressibility of the mixture and ensures nu-
merical consistency and accuracy of the phases;

• A mixture viscosity model to prevent instability arising from
overly dynamic interphase movement.

2 RELATED WORK
Fluid simulation is well-researched in computer graphics. For an
overview, we refer to Bridson’s book [Bridson 2015] and the report
by Koschier et al. [2019].We next discuss related work onmultiphase
flow simulation focusing on (im)miscible fluids [Ren et al. 2018].

Immiscible fluids. Research on immiscible fluids focuses on dis-
continuities at interfaces [Boyd and Bridson 2012; Hong and Kim
2005; Kim 2010; Li et al. 2021; Losasso et al. 2006]. Simulations range
from simple particle collision computations [Mao and Yang 2006]
to more advanced approaches, like distinct phase labeling and at-
tribute assignment in MPS [Premžoe et al. 2003] and SPH [Müller
et al. 2005] methods. The number density concept [Solenthaler and

Pajarola 2008] improved capturing interface density discrepancies
to model solid and multiphase fluid interactions [Akinci et al. 2012;
Band et al. 2018]. Extensions include position-based fluid meth-
ods [Alduán et al. 2017] and hybrid simulations like FLIP [Ando
et al. 2015; Boyd and Bridson 2012] and LBM [Guo et al. 2017].

Mixture models. A pivotal aspect of fluid simulations, especially
when interacting with intricate interfaces, is the precise characteri-
zation of themixture state. TheMixture model, leveraging the volume
fraction approach, has become a mainstay. It is widely applied into
a variety of coupling scenarios for fluid simulation. Notably, Daviet
and Bertails-Descoubes [2017] incorporated mixture theory for gran-
ular materials, negating the need for fluid-solid coupling at granular
levels, thereby achieving computational economy. Analogous chal-
lenges emerge in fluid-fabric dynamics. Fei et al. [2018] devised
a model that adeptly captures the intrinsic physical attributes of
fabric, both structurally and texturally, especially under saturation
conditions. In the realm of underwater bubble simulations, Wret-
born et al. [2022] employed mixture models to cohesively integrate
bubble and water phases using continuum mechanics equations,
obviating intricate parameter adjustments and delivering authentic
whitewater visualizations.

For coupling between fluids, Müller et al. [2005] introduced vol-
ume fraction for miscible multi-fluid systems, later adopted by grid-
based [Bao et al. 2010; Kang et al. 2010] and SPH solvers [Liu et al.
2011]. However, these models overlooked fluid mixing/separation
due to flow motion and force distribution. Drift-velocity-based mod-
els [Ren et al. 2014; Yan et al. 2016] addressed these and enhanced
mixing and unmixing simulations. Yet, limitations remained, such
as incompatibility with incompressible solvers [Ren et al. 2014;
Yan et al. 2016]. Jiang et al. proposed further refinements with
divergence-free [Jiang et al. 2020] an dynamic mixture models [Jiang
and Lan 2021]. However, the latter model still struggles with main-
taining incompressibility and with numerical error reduction [Jiang
and Lan 2021; Jiang et al. 2020].
Energy-based multi-fluid simulations, such as Yang et al. [2015],

use the Helmholtz free energy and the Cahn-Hilliard equation for
complex fluid interactions. However, these methods lack high-order
accuracy for drift velocity and suffer from slow convergence [Yang
et al. 2017, 2015]. Hybrid methods like the Material Point Method
(MPM) offer advantages for simulating sand-water and sediment
mixtures [Gao et al. 2018; Tampubolon et al. 2017].
Previous mixture models relying on LEA or ignoring relative

motion struggle to capture behaviors in dynamic scenarios [Jiang
and Lan 2021; Ren et al. 2014]. Jiang et al. [2021] proposed a dy-
namic mixture model, but faced challenges with mass and volume
conservation and solver integration.
We present an implicit mixture model for mass conservation

and enhanced numerical accuracy. Drawing inspiration from the
force balance model [Manninen et al. 1996], we unify the motion of
individual phases and the mixture for improved interphase effects.
Our method integrates seamlessly with existing implicit Lagrangian
pressure solvers [Band et al. 2018; Solenthaler and Pajarola 2008]
with only minimal modifications.
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Fig. 2. Schematic diagram of our proposed implicit mixture model. We
use a volume fraction-based mixture model to illustrate the coexistent
state of multiphase flows (upper diagram, see Sec. 3). Unlike traditional
approaches which use a unified mixture field to compute motion for all
phases, we employ a phase-specific interphase momentum mechanism
(lower-left diagram, Sec. 4.1) to allow individual phase motion computation.
We derive each momentum source for every fluid phase implicitly taking
into account both no-slip and free-slip conditions (lower-right diagram,
Secs. 4.2 and 4.3, respectively).

3 MIXTURE MODEL

3.1 Volume Fraction Scheme
The volume fraction scheme [Manninen et al. 1996] models the
coexistence state of phases within a single fluid parcel (see the
upper part of Fig. 2). While the term particle refers to the fluid
elements in the discretized SPH approach, we use the term parcel to
denote a small, finite portion of fluid in the continuum hypothesis,
representing the fluid in physical equations.
Volume is conserved for all 𝑘 fluid phases. That is, given the

fractionalized volume 𝛼𝑘 ∈ [0, 1] of a fluid parcel at location x, we
have that ∑︁

𝑘

𝛼𝑘 (x) = 1. (1)

We next generally omit the dependence on x to simplify exposition.
Let v𝑘 denote the velocity field of phase 𝑘 . The mixture velocity

giving the velocity of the volume center of a fluid parcel is

v𝑚 =
∑︁
𝑘

𝛼𝑘 v𝑘 . (2)

The mixture velocity conserves ∇ · v𝑚 = 0 as it represents the
mixture’s incompressibility [Jiang et al. 2020].
The drift velocity of phase 𝑘 given by

v𝑉𝑘 = v𝑘 − v𝑚 (3)

measures the difference between the phase and mixture velocities.
According to Eqn. (2), the drift velocity should follow

∑
𝑘 𝛼𝑘v𝑉𝑘 = 0.

Similarly, themixture density can be computed using the rest density
𝜌𝑘 of each phase as

𝜌𝑚 =
∑︁
𝑘

𝛼𝑘𝜌𝑘 . (4)

3.2 Governing Equations
A mixture model defines the continuity and momentum equations
for each phase. Following the original physical model [Manninen

et al. 1996], the continuity equation reads
𝜕

𝜕𝑡
(𝛼𝑘𝜌𝑘 ) + ∇ · (𝛼𝑘𝜌𝑘v𝑘 ) = 0. (5)

This equation ensures mass conservation for all phases. By substi-
tuting the phase velocity in Eqn. (5) with the drift velocity from
Eqn. (3), the volume fraction change rate can be written as

𝐷

𝐷𝑡
𝛼𝑘 = −∇ · (𝛼𝑘v𝑉𝑘 ) , (6)

where 𝐷
𝐷𝑡

is the material derivative that is subject to the mixture
velocity. For any physical attribute 𝐴, its material derivative with
respect to the mixture velocity v𝑚 is defined as 𝐷𝐴

𝐷𝑡
= 𝜕𝐴

𝜕𝑡 +(v𝑚 ·∇)𝐴.
The momentum equation for phase 𝑘 reads
𝜕

𝜕𝑡
(𝛼𝑘𝜌𝑘v𝑘 )+∇ · (𝛼𝑘𝜌𝑘v𝑘v𝑘 ) = −𝛼𝑘∇𝑝𝑘 +∇· (𝛼𝑘𝝉𝑘 )+𝛼𝑘𝜌𝑘g+M𝐼

𝑘
, (7)

where 𝑝𝑘 , 𝝉𝑘 , g, and M𝐼
𝑘
are the pressure, viscous stress tensor,

gravity, and interphase momentum source, respectively. Eqn. (7)
ensures momentum conservation for all phases. The interphase
momentum sourceM𝐼

𝑘
models how themotion of a single fluid phase

is affected by the entire mixture flow. This obeys a rigorous force
balance model [Manninen et al. 1996] complying with

∑
𝑘 M𝐼

𝑘
= 0.

Since the standard mixture model does not explicitly define the
interphase momentum source M𝐼

𝑘
, various forms of it have been

introduced in previous works. Ren et al. [2014] proposed a com-
prehensive term to cover both inertia-induced drag and diffusion
effects. Jiang et al. [2020] simplified it to model only the drag effect.
However, these two terms make it challenging to maintain stable
simulation systems. The LEA must ensure that the drift velocity
returns to zero at the start of each time step. Jiang et al. [2021] fur-
ther presented a more artificial, yet stabler, approach to enable the
continuity of drift velocity. In our work, we derive the interphase
momentum source directly from Eqn. (5) and Eqn. (7), which can
overcome all above difficulties without the need for LEA.

4 IMPLICIT MIXTURE MODEL FOR MULTIPHASE
INTERACTIONS

We now introduce our implicit mixture model (see Fig. 2 bottom).
To ease reading, Tab. 1 lists all momentum sources used throughout
our exposition. Note that the advection momentum source in Tab. 1
is the advection caused by drift velocity, not the term in the Navier-
Stokes equation caused by fluid velocity; the latter is the mixture
velocity in this paper. We also adopt the notation 𝑝𝑘 = 𝑝𝑚 for all
mixture phases [Manninen et al. 1996; Ren et al. 2014].

4.1 Interphase Momentum
Considering the conservation of mass terms inherited from Eqn. (5),
the left-hand side of Eqn. (7) is subject to a transformation. This
revised representation, encompassing the predefined momentum
sources, is given by

𝜕

𝜕𝑡
(𝛼𝑘𝜌𝑘v𝑘 ) + ∇ · (𝛼𝑘𝜌𝑘v𝑘v𝑘 ) = 𝛼𝑘𝜌𝑘

𝐷

𝐷𝑡
v𝑘 − M𝑎

𝑘
. (8)

Then, Eqn. (7) can be rewritten as

𝛼𝑘𝜌𝑘
𝐷

𝐷𝑡
v𝑘 = M𝑝

𝑘
+M𝑣

𝑘
+M𝑔

𝑘
+M𝐼

𝑘
+M𝑎

𝑘
. (9)
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Table 1. Notations of momentum sources for a mixture of 𝑘 phases (Sec. 4).

Phase momentum sources M𝑘
Corresponding mixture
momentum sourcesM𝑚

Corresponding interphase
momentum sourcesM𝐼

𝑘

Component Notation Values Notation & Values Notation & Values
pressure M𝑝

𝑘
−𝛼𝑘∇𝑝𝑘 M𝑝

𝑚 =
∑

𝑘 M𝑝

𝑘
= −∇𝑝𝑚 M

𝐼𝑝

𝑘

viscosity M𝑣
𝑘

∇ · (𝛼𝑘𝝉𝑘 ) M𝑣
𝑚 =

∑
𝑘 M𝑣

𝑘
= ∇ · 𝝉𝑚 M𝐼𝑣

𝑘

gravity M𝑔

𝑘
𝛼𝑘𝜌𝑘g M𝑔

𝑚 =
∑

𝑘 M𝑔

𝑘
= 𝜌𝑚g —

advection M𝑎
𝑘

−𝛼𝑘𝜌𝑘v𝑉𝑘 · ∇v𝑘 M𝑎
𝑚 =

∑
𝑘 M𝑎

𝑘
M𝐼𝑎

𝑘

drift M𝑑
𝑘

−𝛼𝑘𝜌𝑘 𝐷
𝐷𝑡

v𝑉𝑘 M𝑑
𝑚 =

∑
𝑘 M𝑑

𝑘
—

Here, 𝛼𝑘𝜌𝑘 𝐷
𝐷𝑡

v𝑘 can be further split as 𝛼𝑘𝜌𝑘 𝐷
𝐷𝑡

v𝑚 −M𝑑
𝑘
according

to Eqn. (3). By summing up Eqn. (9) for all phases under the force
balance model [Manninen et al. 1996] condition

∑
𝑘 M𝐼

𝑘
= 0, the

mixture’s momentum is

𝜌𝑚
𝐷

𝐷𝑡
v𝑚 = M𝑝

𝑚 +M𝑣
𝑚 +M𝑔

𝑚 +M𝑑
𝑚 +M𝑎

𝑚 . (10)

Subtracting Eqn. (10) from Eqn. (9) yields the change rate of drift
velocity

𝐷

𝐷𝑡
v𝑉𝑘 =

𝐷

𝐷𝑡
v𝑘 − 𝐷

𝐷𝑡
v𝑚 =

M{𝑝,𝑣,𝑔,𝑎,𝐼 }
𝑘

𝛼𝑘𝜌𝑘
− M{𝑝,𝑣,𝑔,𝑑,𝑎}

𝑚

𝜌𝑚
, (11)

where {} denotes the sum of the specified momentum sources.
To investigate how interphase momentum affects phase-phase

interactions, we consider two extreme analysis scenarios.

No-drift scenario. In this scenario, all phases are tightly coupled,
indicating strong interphase momentum. This prevents the mixture
from separating, resulting in 𝐷

𝐷𝑡
v𝑉𝑘 = 0 andM𝑑

𝑘
= 0 being always

true. We denote next the interphase momentum asM𝐼𝑛
𝑘

and the drift
momentum as M𝑑0

𝑘
. Following Eqn. (11), the interphase momentum

is given by

M𝐼𝑛
𝑘

=
𝛼𝑘𝜌𝑘

𝜌𝑚
M{𝑝,𝑣,𝑔,𝑑0,𝑎}

𝑚 − M{𝑝,𝑣,𝑔,𝑎}
𝑘

= 𝛼𝑘 (𝜌𝑘 − 𝜌𝑚 )
(
𝐷

𝐷𝑡
v𝑚 − g

)
+
(
𝛼𝑘M

{𝑝,𝑣,𝑎}
𝑚 − M{𝑝,𝑣,𝑎}

𝑘

)
.

(12)

The no-drift interphase momentum can be interpreted as follows.
The first term on the right-hand side of Eqn. (12) is the offset created
to reduce inertia-related drift, such as sand in water separated by
gravity. This term counteracts the acceleration causing sand and
water to stick together. The second term addresses the differences in
momentum sources between phase-level and mixture-level, caused
by pressure, viscosity, and advection.

Free-drift scenario. In this scenario, all phasesmove independently
without influencing each other, so the interphase momentum is
always zero. The free-drift momentum source can be derived from
Eqn. (11) as

M
𝑑𝑓

𝑘
= M{𝑝,𝑣,𝑔,𝑎}

𝑘
− 𝛼𝑘𝜌𝑘

𝜌𝑚
M

{𝑝,𝑣,𝑔,𝑑𝑓 ,𝑎}
𝑚

= 𝛼𝑘 (𝜌𝑚 − 𝜌𝑘 )
(
𝐷

𝐷𝑡
v𝑚 − g

)
−
(
𝛼𝑘M

{𝑝,𝑣,𝑎}
𝑚 − M{𝑝,𝑣,𝑎}

𝑘

)
.

(13)

Analytic interphase momentum expression. An interesting rela-
tion between the no-drift and free-drift scenarios emerges from
Equations 12 and 13 asM𝑑𝑓

𝑘
= −M𝐼𝑛

𝑘
. This tells that the stronger the

interphase momentum source, the harder it is to generate drift veloc-
ity. Based on this observation, we further assume thatM𝐼

𝑘
= −M𝑑

𝑘
,

which perfectly satisfies Eqn. (11). We next analytically express the
interphase momentum source using Eqn. (12) as

M𝐼
𝑘
= 𝐶𝑑M

𝐼𝑛
𝑘
, (14)

where 𝐶𝑑 ∈ [0, 1] models the drift amount: 𝐶𝑑 = 0 yields free drift
and 𝐶𝑑 = 1 yields no drift. Similar forms of interphase momentum
sources have been earlier used to compute the change rate of drift
velocity [Jiang et al. 2020; Ren et al. 2014]. Yet, while crucial for pro-
ducing a divergence-free mixture velocity field, a concise expression
without any approximation during derivation has been absent. In
contrast, we provide phase-level operations that show how drift
conditions can be altered using an interphase momentum source
without violating mixture-level incompressibility.

4.2 Phase-mixture Momentum Mapping
We next compute each phase’s motion changes by each momentum
source via Eqn. (14). Four main momentum sources influenceM𝐼

𝑘

according to Eqn. (12), while 𝐷
𝐷𝑡

v𝑚 can be affected by all five (see
Eqn. (10)).

When computing M𝐼
𝑘
, we ignore advection and drift momentum

sources. This not only eliminates the computational demand for ∇v𝑎
𝑘

and the time derivative of v𝑉𝑘 but also crucially allows Eqn. (10) to
be treated as a single-phase fluid. This strategy enables the use of an
implicit pressure solver [Bender and Koschier 2017] throughout the
simulation, facilitating larger time steps compared to the explicit
solver-based method [Jiang and Lan 2021], and yielding a speedup of
roughly 2–3 times in total. We next show how viscosity and pressure
momentum sources influence each phase’s motion.

Since viscosity affects each phase, the change rate of phase veloc-
ity generated by viscosity can be derived from Eqn. (9) as

𝐷𝑣

𝐷𝑡
v𝑘 =

1
𝛼𝑘𝜌𝑘

(
M𝑣

𝑘
+M𝐼𝑣

𝑘

)
=
𝐶𝑑𝛼𝑘 (𝜌𝑘 − 𝜌𝑚 ) 𝐷𝑣

𝐷𝑡
v𝑚 +𝐶𝑑𝛼𝑘M𝑣

𝑚 + (1 − 𝐶𝑑 )M𝑣
𝑘

𝛼𝑘𝜌𝑘

= 𝐶𝑑

M𝑣
𝑚

𝜌𝑚
+ (1 − 𝐶𝑑 )

M𝑣
𝑘

𝛼𝑘𝜌𝑘
,

(15)

where M𝐼𝑣
𝑘

= 𝐶𝑑𝛼𝑘 (𝜌𝑘 − 𝜌𝑚) 𝐷𝑣

𝐷𝑡
v𝑚 + 𝐶𝑑𝛼𝑘M𝑣

𝑚 is the viscosity-
related part of the interphasemomentum source according to Eqn. (14),
and 𝐷𝑣

𝐷𝑡
v𝑚 = M𝑣

𝑚/𝜌𝑚 is the viscosity-induced change rate of mix-
ture velocity from Eqn. (10).
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Similarly, the change rate of phase velocity produced by pressure
is

𝐷𝑝

𝐷𝑡
v𝑘 = 𝐶𝑑

M𝑝
𝑚

𝜌𝑚
+ (1 − 𝐶𝑑 )

M𝑝

𝑘

𝛼𝑘𝜌𝑘
=

M𝑝
𝑚

𝜌𝑚

(
𝐶𝑑 + (1 − 𝐶𝑑 )

𝜌𝑚

𝜌𝑘

)
, (16)

whereM𝑝

𝑘
= −𝛼𝑘∇𝑝𝑘 . Again, we follow 𝑝𝑘 = 𝑝𝑚 for all phases [Man-

ninen et al. 1996]. Eqn. (16) is our proposed phase-mixture momen-
tum mapping mechanism which calculates the movement of phase
flow using mixture momentum sources.

Previous mixture models [Jiang et al. 2020; Ren et al. 2022, 2014]
focus on the solvable momentum equation, considering interphase
momentum as a consequence. This creates a causal relation be-
tween momentum, mixture velocity change rate, and drift velocity
(Eqns. (14) and (12)). The change rate of mixture velocity, 𝐷

𝐷𝑡
v𝑚 ,

must occur first in a time step to ‘generate’ the interphase momen-
tum source that next alters drift velocity. This approach violates the
relation between phase velocity and mixture velocity in Eqn. (2),
making it impossible to obtain a stable mixture-level fluid descrip-
tion without LEA. Although Jiang et al. [2021] proposed to compute
mixture-level fluid motion from phase-level to abandon LEA, the
introduced artificial momentum source term could result in weak
compressibility for the mixture flow; also, the volume fraction of
fluid particles needs to be re-normalized at each time step.

In contrast, our method simultaneously solves the velocity change
rate for all fluid phases and the mixture flow. According to Eqn. (16),
the phase velocity change rate can be implicitly expressed through
the pressure component of the mixture momentum source. The term
− 1
𝜌𝑚

∇𝑝𝑚 is solvable using any standard fluid simulation approach.
This substitution in Eqn. (15) and (16) unifies phase, drift, and mix-
ture velocities, ensuring natural mass conservation and consistent
volume fraction summation for all particles.

4.3 Mixture Viscosity Model
The standard mixture model does not specify how phases interact
with each other. Since the mixture model uses the LEA, viscosity
is assumed to bind phases together, reverting to the mixture veloc-
ity. Jianget al. [2021] designed their artificial interphase momentum
source with this idea in mind. In contrast, we modify the viscous
momentum source from a single-phase viscosity computation proce-
dure to a viscosity computation between the phase and the mixture.
For the entire computational domain Ω, this is given by

M̃𝑣
𝑘
(x) = 𝛼𝑘 (x) 𝜇𝑘∇2

x

(
v𝑚 +

∫
Ω
v𝑉𝑘 (x) 𝛿 (x)

)
, (17)

where 𝜇 is the dynamic viscosity coefficient and 𝛿 denotes the Dirac
delta function. This derivation is consistent with the standard mix-
ture model, telling that a single fluid phase interacts equally with
all other phases. Moreover, this form conserves momentum for
each fluid parcel while maintaining

∑
𝑘 M̃𝑣

𝑘
= M𝑣

𝑚 if the dynamic
viscosities of all phases are the same.

5 IMPLEMENTATION
We integrate our implicit mixture model (Sec. 4) into the DFSPH ap-
proach [Bender and Koschier 2017] as detailed next (see also Alg. 1).
We refer to SPH overviews [Ihmsen et al. 2014; Koschier et al. 2019]

for more details about smoothed particle hydrodynamics approaches
and to Ren et al. [2014] for the volume fraction implementations.

Algorithm 1:Mixture model with DFSPH
A. Preparation

1. Calculate mixture velocity v𝑚 Eqn. (2)
2. Calculate drift velocity v𝑉𝑘 Eqn. (3)
3. Update particle rest density 𝜌𝑚 Eqn. (4)

B. DFSPH divergence-free solver
4. CalculateM𝑝div

𝑚 using DFSPH
5. Update phase velocity (fromM𝑝

𝑘
) v𝑘 += Δ𝑡 𝐷

𝑝div
𝐷𝑡

v𝑘
Eqn. (16)

6. Repeat Step A.1 to update v𝑚
C. Advection

7. Update phase velocity (fromM𝑣
𝑘
)

v𝑘+=Δ𝑡 𝐷
𝑣

𝐷𝑡
v𝑘 with M𝑣

𝑘
as M̃𝑣

𝑘
Eqns. (15), (17)

8. Update phase velocity (fromM𝑔

𝑘
) v𝑘+=Δ𝑡g

9. Repeat Step A.1 to update v𝑚
D. DFSPH incompressible solver

10. Calculate M𝑝inc
𝑚 using DFSPH

11. Update phase velocity (fromM𝑝

𝑘
)

v𝑘 += Δ𝑡 𝐷
𝑝inc
𝐷𝑡

v𝑘 Eqn. (16)
12. Repeat Steps A.1 and A.2 to update v𝑚 and v𝑉𝑘
13. Update particle position x += Δ𝑡v𝑚

E. Phase transfer
14. Update volume fraction

𝛼𝑘 += Δ𝑡 𝐷
𝐷𝑡

𝛼𝑘 + Δ𝑡∇2 (𝐷𝑚𝛼𝑘 ) Eqns. (6), (20)

5.1 Volume Incompressible SPH
We replace using density to constrain the incompressible state with
the concept of volume incompressibility [Band et al. 2018] to adapt
SPH solvers for fluids with nonuniform density fields via

𝜓𝑖 =
∑︁
𝑗

𝑉 0
𝑗𝑊𝑖 𝑗 , (18)

where 𝜓 represents the compression ratio of particle 𝑖 and 𝑗 are
all its neighbors within a supporting radius ℎ (we use the same 𝑖 ,
𝑗 notation in all our implementation next); 𝑉 0

𝑗
is the rest volume;

and for the normalized smoothing kernel𝑊𝑖 𝑗 =𝑊 (∥x𝑖 − x𝑗 ∥, ℎ) ,
we used a cubic spline as outlined in [Ihmsen et al. 2014]. Pressure
solvers are employed to maintain𝜓 < 1.

5.2 Advection-projection Procedure
Following implicit SPH, we divide a simulation time-step into two
stages: advection and projection, as follows.

Advection. During advection, gravity and viscosity forces are
initially used to alter the velocity of each fluid particle, yielding a
compressible fluid field. Our advection for each phase (Alg. 1, step
C) computes our refined viscosity momentum source (Eqn. 17) using
an artificial SPH Laplacian approximation [Ihmsen et al. 2014] as

M̃𝑣
𝑘
(x𝑖 ) = 2(𝑑 + 2)𝛼𝑘𝑖 𝜇𝑘

∑︁
𝑗

𝑉 0
𝑗

(
v𝑘𝑖 − v𝑚 𝑗

)
· x𝑖 𝑗

∥x𝑖 − x𝑗 ∥2 + 0.01ℎ2
∇𝑊𝑖 𝑗 , (19)
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where 𝑑 denotes the dimension (𝑑 = 2 or 𝑑 = 3) of the scenario and
ℎ is a regularization factor.

Projection. During projection, pressure forces are implicitly de-
rived to restore the fluid to an incompressible state. Following DF-
SPH [Bender and Koschier 2017], we do two projection steps, before
and after advection (Alg. 1, steps B and D). Step B uses pressure
forces to make the velocity field divergence-free. We denote the
induced mixture-level momentum source and change rate of phase
velocity as

∑
𝑘 M

𝑝div
𝑘

and 𝐷𝑝div
𝐷𝑡

v𝑘 , respectively. Step D predicts the
position of the fluid particle at the next time step to make the fluid
incompressible. We denote the momentum and change rate of phase
velocity in step D as

∑
𝑘 M

𝑝inc
𝑘

and 𝐷𝑝inc
𝐷𝑡

v𝑘 , respectively.

5.3 Phase Transfer
Two factors cause changes in the particles’ volume fraction (Alg. 1,
step E). The first one is drift velocity. We use the SPH approxima-
tion [Jiang et al. 2020] to compute Eqn. (6) as

𝐷𝛼𝑘𝑖

𝐷𝑡
= −

∑︁
𝑗

𝑉 0
𝑗

(
𝛼𝑘𝑖 v𝑉𝑘𝑖 + 𝛼𝑘 𝑗

v𝑉𝑘 𝑗

)
· ∇𝑊𝑖 𝑗 . (20)

The second factor is the diffusion term. Similar to the previous
divergence-free mixture model [Jiang et al. 2020], we use a diffusion
coefficient 𝐷𝑚 to control the diffusion effect as

∇2 (𝐷𝑚𝛼𝑘𝑖

)
= 𝐷𝑚

∑︁
𝑗

𝑉 0
𝑗

(
𝛼𝑘𝑖 − 𝛼𝑘 𝑗

) (x𝑖 − x𝑗 ) · ∇𝑊𝑖 𝑗

∥x𝑖 − x𝑗 ∥2 + 0.01ℎ2
. (21)

6 EXPERIMENTS
We evaluate our method under different scenarios both analytically
and visually (see Tab. 2) and compare it with a state-of-the-art dy-
namic mixture model [Jiang and Lan 2021]. We implemented our
physics simulation framework using Taichi [Hu et al. 2019] and
rendered results with Blender’s Cycles engine. We ran our exper-
iments on an NVIDIA 3090 Tensor Core GPU for both simulation
and rendering. Our implementation is available as open source for
replicability [Xu 2023].

Table 2. Experiment configurations.

Scene Figure(s) Particle Particle Drag Diffusion
count size [m] coefficient coefficient

Tea Fig. 1 499K 0.03 0.5 0.05

Collide Fig. 3 474K 0.0055 𝐶𝑑 : 0, 0.3, 0.7, 1 0
𝑘𝑑 : 0, 3, 7, 10

Hourglass Fig. 4 350K 0.03 𝐶𝑑 : 0.29; 𝑘𝑑 : 5 0.05

Rotate Fig. 5 473K 0.0075 𝐶𝑑 : 0, 0.3, 0.7, 1 0
𝑘𝑑 : 0, 3, 7, 10

Ink drop Fig. 6 509K 0.05 𝐶𝑑 : 1, 0.6; 𝑘𝑑 : 10 0
Phase Fig. 7, 49K 0.045 𝐶𝑑 : 0.61, 0.29, 0 0separation Fig. 8 𝑘𝑑 : 10, 5, 2.53
Cocktail 2 Fig. 9 1.09M 0.05 0.94 0.6
Propeller Fig. 10 555K 0.035 𝐶𝑑 : 0.95 0.5
Cocktail 1 Fig. 11 1.09M 0.05 0.6 0.1

6.1 Performance Analysis
6.1.1 Momentum Conservation. We executed two experiments to
evaluate the conservation of linear and angular momentum. In each
case, fluid particles were initialized with an equal mixture of two
fluid phases, shown in red and blue, maintaining a density ratio
of 1 : 2 (see Figs. 3 and 5). We excluded any external momentum
sources, e.g., gravity. Our method was tested using drift coefficients
𝐶𝑑 = 0.0 (free-drift), 0.3, 0.7, and 1.0 (no drift, DFSPH-only). We
also assessed the mixture model proposed by Jiang et al. using drift
coefficients 𝑘𝑑 = 0.0, 3.0, 7.0, and 10.0. Although [2021] does not
mention free-drift, we use 𝑘𝑑 = 0.0 to denote the most pronounced
effects, which taper off with increasing values, in tandem with
WCSPH-only. We excluded viscosity in these tests, barring two sets
in the Collide experiment. Detailed results can be also seen in the
accompanying video.
Collide: The first experiment aimed to test the conservation of

linear momentum. A smaller fluid cube, initially having a velocity
of 1𝑚/𝑠 moving to the right, was set to collide with a larger, station-
ary fluid cube (Fig. 3). As observed during the collision, the denser
blue phase began to separate from the contact surface, a result of
its heightened inertia. In contrast, the lighter red phase, with its
heightened sensitivity to the collision dynamics, quickly congre-
gated in the spherical region of the fluid cubes. Over time, the phase
separation between the red and blue fluids became increasingly
distinct.
The chart in Fig. 3(c) shows that, in the absence of a multiphase

solver (negating drift effects), both DFSPH and WCSPH adeptly
conserve momentum. When our implicit mixture model is activated
at 𝐶𝑑 < 1, the phase separation intensifies, yet linear momentum
remains largely unaltered over time. In contrast, Jiang et al.’s model
introduces momentum discrepancies, as most trials using this ap-
proach exhibited deviations from the benchmark, particularly over
extended simulation durations.
Rotate: Our second experiment focused on the conservation

of angular momentum and was set in a round pool containing a
swirling fluid ring (Fig. 5). The fluid ring initially displayed an irra-
tional counterclockwise velocity field. Here, each particle’s velocity
was tangential to the center, with its magnitude being inversely pro-
portional to its distance to the center. As the experiment progressed,
the centrifugal effect manifested itself. The denser blue fluid phase
gradually settled in the peripheral regions, while the center became
dominated by the pure red phase.
Fig. 5(c) shows that DFSPH and our method both experience

similar angular momentum reduction over time, reflecting the simu-
lation’s inherent dissipative nature without external energy.WCSPH
dissipates faster than DFSPH and could destabilize without viscosity.
The dynamic mixture model of [2021] intensifies this, hindering
optimal conservation. In our model, as 𝐶𝑑 nears zero, angular mo-
mentum attenuation slightly surpasses the DFSPH-only case. We
believe this is due to updating the volume fraction at step E of
Alg. 1, causing minor errors during phase exchanges among parti-
cles, especially with notable phase separation. However, this does
not adversely impact visuals or stability.

6.1.2 Simulation Efficiency. We assessed the efficiency of our me-
thod against the existing approach using performance statistics
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Table 3. Time statistics for the collide experiment.

time consumed
for one time step
[s]

time consumed
for one second
of animation [s]

Jiang et al.

WCSPH 1.41 × 10−3 51.41

Neighbor search 2.18 × 10−3 79.12

Multiphase 2.49 × 10−2 905.33

Our method

DFSPH 1.75 × 10−2 63.65

Neighbor search 2.67 × 10−3 9.70

Multiphase 2.98 × 10−2 108.51

from the collide experiment in Fig. 3. For this experiment, time
consumption was measured from two vantage points: The average
time consumed per segment of a single simulation loop (referred to
as the "time step"), and The average time needed to generate 1 second
of simulation animation (which involves summing the time cost of
each time step up to a second). This distinction is pivotal, given that
DFSPH, an implicit fluid solver, permits a considerably larger time
step than the explicit WCSPH solver. As a result, DFSPH requires
significantly fewer simulation loops than WCSPH to produce an
equivalent duration of simulation. Notably, although each DFSPH
loop might individually take longer than aWCSPH loop, fewer loops
overall lead to time savings. Tab. 3 shows the average time taken to
generate 1 loop/second of animation for our method and Jiang et al.’s
model. Our approach consistently required significantly less time.
This efficiency arises because DFSPH supports a considerably larger
time step per simulation loop compared to WCSPH. With a particle
size of 0.0055𝑚, our method’s maximum time step is approximately
2.75 × 10−4𝑠 and about 2.75 × 10−5𝑠 for WCSPH. Our multiphase
solver requires a marginal 2% more time per loop than Jiang et al.’s
but our substantial speedup due to the time step difference makes
this extra cost negligible.

6.1.3 Mass Conservation. Two Phase Separation: In this exper-
iment, a fluid bulk with two thoroughly mixed phases is left to
separate under gravity (Fig. 8(a)). The volume fraction of the two
phases is 1 : 1 and the density ratio is 1 : 2 (red : blue). This
experiment tests the numerical performance of our method, the
implicit mixture model [Jiang and Lan 2021], and ours with LEA for
two-phase separation under gravity. The experiment also maps the
relation between the drag 𝑘𝑑 and 𝐶𝑑 .
All three methods are capable of simulating this scenario. Yet,

our method with LEA separates very slowly. Only a thin separation
layer is noticeable after 30 seconds, suggesting that the mixture
model suboptimally handles this scenario (see also the accompany-
ing video). Our method and the method of Jiang et al. separate at
similar speeds, with 𝐶𝑑 = 0, 𝑘𝑑 = 2.53 being the quickest; followed
by 𝐶𝑑 = 0.29, 𝑘𝑑 = 5; and 𝐶𝑑 = 0.61, 𝑘𝑑 = 10 being the slowest.
We compare these three coefficient sets because 𝑘𝑑 = 10 is recom-
mended in the dynamic mixture model [Jiang and Lan 2021] and
𝐶𝑑 = 0 models free drift in our method.

Figure 8(c)–(e) shows the phase velocity on the 𝑦-axis (𝑣𝑘,𝑦 ) with
𝐶𝑑 = 0, 𝑘𝑑 = 2.53 under the status of Fig. 8(b). The method of Jiang
et al. retains some phase velocity at the far ends of the 𝑦-axis, where
the two phases are separated and no phase velocity should occur.
Our method avoids this issue and has the largest phase velocity
near the separated and mixed regions, where the gradient of volume
fraction is the greatest.

Fig. 7 shows the variation of the incompressible state of the mix-
ture (Fig. 7(a)), volume fraction of each phase (Fig. 7(b)), and phase-
level kinetic energy measured through the phase velocity (Fig. 7(c))
over time. The dynamic mixture model [Jiang and Lan 2021] con-
serves neither incompressibility nor mass of each phase as rigor-
ously as our method since they use a weakly-compressible pressure
solver and regularize the volume fraction at each time step. More-
over, the kinetic energy of our method always manages to reach the
same peak regardless of the speed of the separation process. This
means the transformation of energy from gravitational potential to
kinetic is unconditionally conserved, which is not the case for [Jiang
and Lan 2021].

6.2 Comparisons of Effects
Ink drop:Adrop of red ink (70% ink phase, 30%water phase) follows
a parabolic trajectory into the water (Fig. 6). The diffusion coefficient
is set to 0. Results show that our method’s drag coefficient can
produce more substantial and consistent turbulence effects due to
phase interactions. In contrast, in the dynamic mixture model [Jiang
and Lan 2021], the drag force reduces this effect.
Hourglass: A blue phase (10 times heavier than the transparent
one) flows through a narrow neck under the influence of both diffu-
sion and interphase momenta. As Fig. 4 shows, our method better
captures the convection vortex. Also, the momentum does not dissi-
pate during convection, as shown by the lively bubbles in the third
column of Fig. 4.

6.3 Effectiveness under Complex Scenarios
Propeller:We simulate the foam generated by a propeller spinning
under water (Fig. 10). The foam phase has half the density of the
water. Moreover, a strong interphase momentum is applied to make
the two phases challenging to separate. As Fig. 10 shows, the foam
becomes more robust and more agitated as the propeller spins faster.
The centrifugal effect can also be seen with the foam being dragged
by the blades, demonstrating our method’s versatility.
Cocktail - phase separation: Five phases of a cocktail with a
density ratio of 1 : 2 : 4 : 8 : 16 are initially evenly mixed in a glass
(Fig. 11). Then, the drag coefficient is applied to ease the separation
of the five phases. The significant density ratio makes the separation
quite dramatic. Our method can handle this process with ease.
Cocktail - drag dominant: Building upon the previous settings,
we show in Fig. 9 an extra strong coupling force and diffusion effect
between phases. Upon stirring, the mixture starts to separate as the
significant density variation creates a high drag force causing the
phases to separate from one another (see also the accompanying
video for detailed differences between phase separation and drag-
dominant experiments).
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Tea bag brewing - diffusion dominant: In contrast to stirring-
induced separation, Fig. 1 presents an experiment of brewing tea
using a tea bag. The tea diffusion into water is obtained by assigning
volume fractions to the solid and enabling diffusion between solid
and liquid. After stirring with a rod, tea and water become evenly
mixed. The density ratio is small enough (1.05) to make the diffusion
effect more dominant than the separation.

7 CONCLUSION
We have presented an implicit mixture model for incompressible
fluid simulation. Our model offers a unified physical description
between phase-level and mixture-level fluid fields by combining
an interphase momentum source and a phase-momentum mapping
mechanism with a mixture viscosity model. This enables mass con-
servation for each phase and volume conservation for the mixture.
Our unified model allows for easy integration with existing fluid
solvers with minimal coding efforts.
Several aspects warrant further exploration to achieve more ac-

curate simulations. The phase transfer occurring at each time step
also introduces momentum from one fluid parcel to another. This
effect could produce intriguing visual results when the drift velocity
is substantial. In future work, we plan to delve deeper into studying
this mechanism and integrate it into our framework.
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(a) [Jiang and Lan 2021] with 𝑘𝑑 = 10. Frame (from left to right) 1, 40, 60, 100

(b) Our method with𝐶𝑑 = 0.0. Frame (from left to right) 1, 40, 60, 100

(c) Comparison of linear momentum in the two blocks collision experiment between our
method and the dynamics mixture model using various𝐶𝑑 and 𝑘𝑑 coefficient values.

Fig. 3. A collision experiment shows the pressure-induced phase separation
abilities of Jiang et al.’s method (a) and our method (b). Our approach
exhibits superior stability, especially in the absence of gravity and viscosity,
by consistently maintaining linear momentum over time (c). See Secs. 6.1.1
and 6.1.2.

(a) Dynamic mixture model [Jiang and Lan 2021] with 𝐾𝑑 = 5

(b) Our method with𝐶𝑑 = 0.29

Fig. 4. The blue phase in the hourglass is convected with the transparent
one causing vortexes and bubbling effects. See Sec. 6.2.

(a) [Jiang and Lan 2021] with 𝑘𝑑 = 10. Frame (from left to right) 1, 10, 20, 40

(b) Our method with𝐶𝑑 = 0.0. Frame (from left to right) 1, 40, 850, 1800

(c) Comparison of angular momentum in the fluid rotation experiment between our
method and the dynamics mixture model using various𝐶𝑑 and 𝑘𝑑 coefficient values.

Fig. 5. Under the centrifugal effect, the rotated fluid separates into two dis-
tinct phases. The dynamic mixture model of [Jiang and Lan 2021] struggles
to maintain stability without the constraints of gravity and viscosity, leading
to unreasonable phase velocities (a). Conversely, our method (b) ensures a
stable conservation of angular momentum throughout the simulation (c).
See Sec. 6.1.1.

(a) Our model with𝐶𝑑 = 1

(b) Our model with𝐶𝑑 = 0.6

(c) [Jiang and Lan 2021] with 𝑘𝑑 = 10

Fig. 6. Red ink drop falls into water along a parabolic trajectory. See Sec. 6.2.
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(a) Phase-level kinetic energy (b) Compression (c) Volume fraction

Fig. 7. Comparison of phase kinetic energy, compression, and volume fraction in the two-phase separation experiment (Fig. 8) between our method and the
dynamic mixture model of [Jiang and Lan 2021] using various𝐶𝑑 and 𝑘𝑑 coefficient values.

(a) Experiment setup

(b) A cross-section (c) Our method with LEA

(d) Dynamic mixture model [2021] (e) Our method

Fig. 8. Our two-phase separation experiment. (a) shows the experiment
setup, (b) shows a visualization of phase velocity (c)–(e) using different
methods. See Sec. 6.1.3.

Fig. 9. A tightly coupled cocktail gets separated after a stir. See Sec. 6.3

Fig. 10. Propeller spinning in water. Foams are formed, especially at higher
propeller speeds. See Sec. 6.3.

Fig. 11. A fully mixed cocktail with phase separation due to the lack of
interphase momentum. See Sec. 6.3.
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