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Abstract Physics-based fluid simulation has played an
increasingly important role in the computer graphics com-
munity. Recent methods in this area have greatly improved
in generating complex visual effects and also in computa-
tional efficiency. Novel techniques have emerged to deal with
complex boundaries, multiphase fluids, gas-liquid interfaces,
and fine details. In parallel, the combined use of machine
learning, image processing, and fluid control technologies
has brought many interesting and novel research perspectives.
In this survey, we provide an introduction to theoretical con-
cepts underpinning physics-based fluid simulation and their
practical implementation with the aim to serve as a guide for
both newcomer and seasoned researchers for exploring the
physics-based fluid simulation field, with a focus on recent
developments in the last decade. Driven by the distribution
of recent publications in the field, we structure our survey to
cover physical background, discretization approaches, com-
putational methods that address scalability, fluid interactions
with other materials and interfaces, and methods for expres-
sive aspects of surface detail and control. From a practical
perspective, we overview existing implementations available
for the above methods.
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1 Introduction
Fluids are a crucial element in visual simulations given their
ubiquitous existence in natural environments. Their versa-
tile motion and complex behavior make fluids an attractive,
but also tricky to describe and compute, target for graphics
simulations. As such, the simulation of fluids has long been
one of the most important subjects in computer graphics.
The development of computer technology has made it possi-
ble to simulate complex fluid phenomena directly using the
governing equations of fluid dynamics. Scores of physics-
based methods and techniques have been proposed to this
end, ranging from simple but inaccurate models to progres-
sively refined, complex, techniques that capture increasingly
challenging dynamics of the interacting media. The diversity
of such methods, with widely varying assumptions, model-
ing power, and underlying implementation techniques, has
made understanding the current state of the art increasingly
challenging, especially for practitioners and newcomers.

This survey aims to address the above understanding chal-
lenge by covering the major research topics of physics-based
fluid simulation in computer graphics and new trends in those
topics over the last decade. It discusses the different goals of
fluid simulation, techniques proposed to address such goals,
challenges of such techniques, and key findings in the field.
We structure our survey in a top-down manner as follows.
Section 2 presents our methodology used in collecting rele-
vant work from the literature (with a focus on the last decade)
and proposes a classification of fluid simulation into seven
main topics. Section 3 introduces the physical background and
discretization approaches used by fluid simulation required
to understand the remainder of the survey. Sections 4–10
discuss the papers found in each of the above-mentioned
seven topics, as follows. Section 4 presents the various classes
of advanced adaptive, parallel, and data-driven computational
approaches used to accelerate the implementation of the sim-
ulation models outlined in Sec. 3. The next three sections
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Fig. 1 Overview of the survey structure (see Sec. 2).

detail more specific and challenging simulation contexts –
fluid interaction with different materials (Sec. 5), multiphase
simulations (Sec. 6), and gas-liquid interfaces (Sec. 7). Sec-
tions 8 and 9 discuss artistic measures for improving the
quality, respectively controlling the appearance and motion,
of the simulated fluids. Section 10 looks into special fluids.
Finally, Section 11 concludes our survey by identifying key
directions for future research. Appendix A presents and dis-
cusses software implementations of fluid simulation covering
numerical simulation, modeling, and rendering aspects.

2 Methodology for constructing the survey
Physics-based fluid simulation is a research area that has been
active for many decades with input from fields as diverse as
engineering, physics, mathematics, and computing science.
Providing a survey of fluid simulation covering all these fields

is too large a challenge for a single paper. Furthermore, we
believe that the interests of typical researchers and practi-
tioners in computer graphics focus on a subset of the above
aspects, and structure our survey accordingly, as follows.

We selected as main information sources articles published
in ACM Transactions on Graphics (TOG), IEEE Transac-
tions on Visualization and Computer Graphics (TVCG), and
Computer Graphics Forum (CGF), which are arguably the
three most influential and representative computer graphics
journals. As our survey aims to cover recent tendencies, we
included all relevant papers from these journals published in
the last decade (2012–2022). We further included some papers
presented at key graphics conferences like ACM SIGGRAPH
/ Eurographics Symposium on Computer Animation (SCA),
ACM SIGGRAPH (SIGGRAPH), and ACM SIGGRAPH Asia
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(SIGGRAPH Asia). Finally, we included earlier papers that
still significantly impact recent research. In total, we collected
and further analyzed 327 such papers.

The origins of physics-based fluid simulation in computer
graphics can be traced back to the 1970s with the develop-
ment of ‘particle systems’ [1]. However, a fully-developed,
reasonably stable physics-based system for fluid animation
was not achieved until the end of the last century [2]. In the
first decade afterwards, various simulation strategies contin-
ued to evolve, focusing on improving stability, accuracy, and
efficiency in fluid simulations. We discuss early development
progress in this respect in Sec. 3.3. Concurrently, research
on specific fluid phenomena and the tailoring of simulated
effects began to emerge and gain momentum.

As we entered the second decade of the 21st century,
which is the primary focus of this survey paper, main research
interests in fluid simulation shifted towards addressing specific
effects that are challenging to achieve using conventional
fluid simulation methods. Alongside this shift, advances in
machine learning technologies have opened up new ways
for integrating neural networks with simulation algorithms,
pushing the boundaries of what can be accomplished in
fluid simulations. As this survey aims to discuss the current
advancements in this area comprehensively, we classify the
collected papers into seven relevant topics that span the past
decade based on our detailed analysis of these papers. Next,
we select a subset of representative papers within each topic
and discuss these in greater detail.

Figure 1 shows the seven identified topics at the first level
of a hierarchy depicting our survey’s structure. Further levels
refine these into sub-topics. The seven main topics are as
follows:

• Advanced computational approaches: (Sec. 4) Meth-
ods that aim to make full use of powerful parallel com-
puting resources for fluid simulation;

• Fluid coupling with multi-materials: (Sec. 5) Methods
that model the interaction between fluid and solid objects
of various sorts of shapes and textures;

• Multiphase liquids: (Sec. 6) Methods for the simulation
of liquid-liquid interaction effects of various phases;

• Gas-liquid interfaces: (Sec. 7) Methods dealing with
scenarios where forces on the gas-liquid interfaces dom-
inate the fluid motion;

• Fine details enhancement: (Sec. 8) Methods that con-
centrate on preserving/enhancing fluid motion on a detail
level;

• Fluid control: (Sec. 9) Methods that allow visual de-
signers to control the appearance and style of fluid

simulations;
• Special fluids: (Sec. 10) Methods that simulate non-

conventional fluids, e.g., highly viscous/thin, sensitive
to magnetic fields, or targeting materials that are strictly
speaking not fluids but behave like fluids.

Our seven-topic classification aims first and foremost to
identify salient trends in the past decade. As such, the emer-
gence of these topics is based on a significant portion of
the found papers that can be grouped within each topic – in
other words, the topics reflect a ‘data-driven organization’
of how research in fluids in the past decade proceeded. This
is in contrast with other surveys which group works based
on a predefined, model-driven taxonomy proposed by the
respective survey authors.

It is insightful to analyze how the found papers distribute
over topics and how these topics evolve over time. Figure 2
shows the number of papers found for each of the seven
identified topics. We see that, while variations exist (some
topics being more popular than others), each topic has a
significant number of papers, with 4–8 top-tier papers per year
on average, thereby supporting the claim that our identified
topics are a good way to organize research. Figure 3 refines
the above insight, showing the number of articles per topic
and per year. We see that, while some topics show an increase
in publications (e.g. advanced computational approaches, the
red curve in Fig. 3), all identified topics have been ‘alive’ over
the past decade – another indication that they are suitable for
organizing our survey.
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Fig. 2 Number of studied papers per identified topic. For each
topic, the top (pure color) bar segment represents papers published
in TOG, CGF, and TVCG. The bottom (shadowed) bar segment
represents other key papers considered in our survey.

3 Fluid simulation overview
The development of fluid simulation in computer graphics is
deeply rooted in the history of physics. In the 19th century,
scientists such as Sir Isaac Newton and Claude-Louis Navier
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Fig. 3 Trends in number of papers published per topic over the
past decade.

contributed significantly to the understanding of fluid mechan-
ics, paving the way for the Navier-Stokes equations. These
equations, which govern fluid motion, form the foundation of
modern fluid simulation algorithms.

This section offers a basic introduction to fluid simula-
tion and provides background knowledge for the rest of the
survey. For a more comprehensive understanding of fluid
simulation, we refer to Bridson’s book [3]. For more specific
knowledge about Lagrangian-based smoothed particle hydro-
dynamics and material point methods, we refer to the surveys
of Koschier et al. [4] and Jiang et al. [5] respectively. Readers
less familiar with this area are highly encouraged to read this
section before diving into the seven topics described next.
We first introduce relevant physical principles behind fluid
simulation such as the continuum hypothesis (Sec. 3.1) and
Navier-Stokes equations (Sec. 3.2). We next present the early
development of this area (Sec. 3.3), including a brief overview
of the ideas behind different discretization strategies.

Table 1 summarizes the main notations used in our survey.
We use these notations accompanied by subscripts, super-
scripts, and brackets with parameters to denote these quantities
under various conditions, as explained further in context.

3.1 Fluid mechanics

Matter in nature is built up of atoms and molecules that
are discrete and separated by space. Simulating fluid at the
microscopic level to describe macroscopic phenomena is
only doable on supercomputers with weeks, if not months,
of computing time. Computer graphics pursues a balance
between efficiency and fidelity. For this, fluid mechanics
based on a continuum hypothesis is the level at which physical
properties are modeled.

Fluid mechanics models an object with matter continu-
ously distributed over its body, an approximation called the

Symbol Description Unit
p Pressure Pa
m Mass kg
ρ Density kg ·m−3

µ Dynamic viscosity Pa · s
γ Surface tension coefficient N ·m−1

S Area m2

V Volume m3

c Fraction -
f Force density N ·m−3

F Force N
u Velocity m · s−1

n Normal vector -
x Position vector m
g Gravitational acceleration m · s−2

ω Angular velocity rad · s−1

T Stress tensor Pa

Table 1 Common notations (and their descriptions) used in this
paper. For vectors and tensors, the ‘Unit’ column shows the unit of
their norm values.

continuum hypothesis. This means that any infinitely small
volume element in the fluid is seen as a continuous medium,
also called a fluid parcel. As Landau and Lifshitz stated [6],
a fluid parcel is ‘very small compared with the volume of
the body under consideration, but large compared with the
distances between molecules’.

In fluid mechanics, the continuity equation describes the
transportation of physical properties in space and time as

∂A (x, t)

∂t
+∇ · (A (x, t)u (x, t)) = s (x, t) , (1)

where A can be an arbitrary scalar, vector or tensor physical
property, u is the velocity, and s is the source term for A, all
described at time t and location x. Equation (1) states that
the change rate of any physical property at a fixed position
∂A/∂t depends on the variation brought by the flux of Au
and the source term s.

Lagrangian and Eulerian viewpoints. Considering the
physical attribute A in Eqn. (1), a flow field can be analyzed
from a Lagrangian or an Eulerian viewpoint, as follows.

The Eulerian viewpoint studies the physical field using
fixed positions. The change rate of the physical value A at a
given position x is the ∂A (x, t)/∂t term in Eqn. (1), which is
caused by both the flux and source terms. While intuitive, this
does not explicitly express the motion of the fluid parcel in
the continuum hypothesis as parcels constantly travel through
fixed locations at all times.

In contrast, the Lagrangian viewpoint studies the change
rate of physical attributes with respect to the fluid parcel by
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recasting Eqn. (1) as
∂A (x, t)

∂t
+ (u (x, t) · ∇)A (x, t)︸ ︷︷ ︸

DA(x,t)
Dt

+A (x, t)∇ · (u (x, t)) = s (x, t)

DAι (t)

Dt
+Aι (t)∇ · uι (t) = sι (t) ,

(2)

where D (·) /Dt, the so-called material derivative, is the
change rate ofA within a fluid parcel. In Eqn. (2), u and s are
respectively the velocity, and the source term, of a specific
fluid parcel. Hence, all positions x can be substituted with
the parcel identifier ι. For brevity, we next omit the explicit
mention of (x, t), (t), and ι unless required by the context.

3.2 Navier-Stokes equations

Numerous methods for calculating fluid motion have been
developed, spanning from Lagrangian to Eulerian perspec-
tives. However, the underlying physical principles for nearly
all these approaches are rooted in the Navier-Stokes equa-
tions, which govern the dynamics of fluid flow and serve as
a fundamental foundation for fluid simulations. We describe
these briefly next.

Mass conservation. In a closed system, fluid mass is con-
served over time. This principle is represented by the conti-
nuity equation (Eqn. (1)). By letting A be the fluid density
and setting s ≡ 0, Eqn. (1) can be written as

Dρ

Dt
+ ρ∇ · u = 0. (3)

For the case of incompressible flow, the density variation
within the flow is conserved, i.e.,Dρ/Dt = 0. This condition
further implies a divergence-free velocity field, as expressed
by

∇ · u = 0. (4)

Navier-Stokes momentum equation. To further describe
the motion of incompressible fluid flow, one can analyze the
momentum of each fluid parcel. By introducing a momentum
term ρu in Eqn. (1) and next using Eqn. (3), we obtain that

∂ρu

∂t
+∇ · (ρu⊗ u) = ρ

Du

Dt
= sm, (5)

where sm is the momentum source altering the speed of each
fluid parcel and ⊗ represents the outer product. Following
this, a basic form of the Navier-Stokes momentum equation
for viscid compressible flow further specifies sm into three
separate terms as

ρ
Du

Dt
= −∇p+ µ∇2u+ ρg, (6)

where p is the pressure, g is the gravitational acceleration,
and µ is the dynamic viscosity coefficient describing how

viscous a fluid is. Equation (6) says that the velocity change
rate for a fluid parcel is affected by three force terms given by
pressure (−∇p), viscosity (µ∇2u), and gravity (ρg).

3.3 Simulation strategies

3.3.1 Early developments

As computer technology advanced in the 20th century, numer-
ical methods became popular for solving partial differential
equations including the Navier-Stokes equations. With the ad-
vent of powerful computer hardware and software, computer
graphics began to incorporate these physics-based algorithms,
enabling increasingly realistic fluid simulations.

Dating back to the 1970s, William T. Reeves, a mem-
ber of Lucasfilm’s Computer Division, Computer Graphics
Group, pioneered the development of ‘particle systems’ [1, 7].
These systems enabled the realistic depiction of elements
such as smoke and fire in films, as seen in “Star Trek II: The
Wrath of Khan.” This breakthrough laid the foundation for
early fluid simulation techniques in computer graphics. In the
1990s, physics-based fluid simulation began to gain traction.
Wejchert and Haumann [8] used a simplified version of the
Navier-Stokes equations to animate irrotational, incompress-
ible linearized fluid flow, providing the physics foundation
for their fluid animations. Subsequently, Stam and Fiume [9]
incorporated the complete Navier-Stokes equations to create
turbulent wind effects.

On the Lagrangian side, Desbrun and Cani [10] introduced
Smoothed Particle Hydrodynamics (SPH) to the computer
graphics field for simulating highly deformable bodies. On the
Eulerian side, Foster and Metaxas [11] used the Navier-Stokes
equations on fixed grids to simulate fluid motion. The study
of fluid simulation reached a significant milestone at the end
of the 20th century with Stam’s Stable Fluids method [2].
This finally made stable, three-dimensional, physics-based
fluid simulation an attainable goal, capable of producing
realistic fluid effects. It was the first unconditionally stable
method for fluid simulation and introduced the concept of
semi-Lagrangian advection, and was one of the earliest works
to apply the idea of hybrid simulation into the field.

Hybrid methods in fluid simulation merge the strengths
of both Lagrangian and Eulerian approaches, yielding more
versatile and robust systems. Two foundational principles that
underpin hybrid fluid simulation are Harlow’s [12] particle-
in-cell (PIC) method and the refined fluid implicit particle
(FLIP) method of Brackbill and Ruppel [13]. These techniques
have significantly contributed to the widespread success and
adoption of hybrid fluid simulation in the 21st century. The
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field also saw a major advancement when Zhu and Brid-
son [14] applied the FLIP method to simulate incompressible
flow. This moved hybrid fluid simulation to new heights as
it enabled exploring complex fluid dynamics with enhanced
precision and stability. The continuous evolution of hybrid
fluid simulation techniques has had a profound impact on
computer graphics, facilitating the creation of realistic and
visually stunning effects.

(a)

uI,J+1/2

uI,J−1/2

uI−1/2,J uI+1/2,Jp

(b)

* *

**

+

++

x

y

(c)

Fig. 4 Schematic diagram of Eulerian grids. (a) Collocated grid
where physical quantities are stored in the cell centres (yellow points).
(b) Staggered grid where different variables are stored at different
locations; in this example, pressure is stored at the cell centres
(black points); velocity is split into its two Cartesian components
and stored at the centres of the vertical cell edges (red and blue
points). Subscripts I and J denote spatial indices. (c) Using bilinear
interpolation to get the value of a physical quantity at any position.

3.3.2 Discretization Strategies
As fluid simulations in computer graphics have evolved since
the early development in the 20th century, the field has
branched out into three distinct categories: Eulerian schemes,
Lagrangian schemes, and hybrid schemes. Each of these ap-
proaches offers unique advantages and challenges, contribut-
ing to the comprehensive understanding of fluid dynamics in
CG.

Eulerian schemes. These simulation methods use the Eule-
rian viewpoint introduced in Sec. 3.1, i.e., compute property
values at fixed points in the simulation domain. For this, the

domain is typically divided into evenly-distributed cells. In
a traditional collocated grid structure (Fig 4a), all physical
values are evaluated at the center of each cell. To derive a
continuous flow field with values at arbitrary positions, e.g.,
the grey dot in Fig. 4c, one can use a weighted interpola-
tion of neighboring cell values. The staggered grid (Fig. 4b)
stores physical values at cell edges and cell centers separately.
Compared with collocated grids, staggered grids are currently
more popular for simulating incompressible fluids given their
higher stability. It is noteworthy that staggered grids are re-
lated to the marker-and-cell (MAC) method [15] which was
used in the early days of computational fluid dynamics to
solve incompressible flow problems.

Lagrangian schemes. In the Lagrangian framework, do-
main discretization is done by a set of particles moving with
the fluid flow, each approximating the physical values of a
fluid parcel. Hence, Lagrangian schemes conserve mass by
construction. Since particle locations can be much more freely
distributed over the computational domain than covering the
same domain with a grid, Lagrangian schemes are also good
at modeling complex free-surface details.

Currently, SPH is one of the most popular Lagrangian
methods for fluid simulation, with origins in the works by
Lucy [16] and Gingold and Monaghan [17]. SPH has evolved
significantly over time, with various advancements and im-
provements.

Figure 5 shows how SPH performs interpolation: Physical
value A at the location xi of particle i is computed by using
a smoothing kernel W as

A (xi) =
∑
j

VjAjW (xi − xj , h) , (7)

where h is called the smoothing length, V is the volume
of (the parcel of) each particle, and j indicates all particles
closer to i than the distance h. To compute higher-order
quantities, e.g., pressure gradients, one can simply replace the
kernel function W in Eqn. (7) by its higher-order counterpart
(gradient in our example).

Initially, the weakly-compressible SPH (WCSPH) [18] ap-
proach was introduced, where pressure computation was
performed explicitly. Later, the Predictive-Corrective Incom-
pressible SPH (PCISPH) [19] method was proposed, which
introduced a prediction-correction scheme for implicit pres-
sure computation. This technique improved the stability and
accuracy of fluid simulations by enforcing incompressibility
more effectively. Further developments led to the introduction
of Implicit Incompressible SPH (IISPH) [20], which provided
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Fig. 5 Schematic diagram of Lagrangian-based smoothed particle
hydrodynamics.

a more strictly incompressible simulation with increased com-
putational efficiency. Most recently, the Divergence-Free SPH
(DFSPH) [21] method has been developed, which further
enforces the divergence-free condition within a simulation.

Position Based Dynamics (PBD) is a versatile and efficient
simulation method for handling various physical phenom-
ena, including fluids, deformable solids, and cloth. PBD
was first introduced by Müller et al. [22] as an alternative
to traditional force-based dynamics, focusing on the direct
manipulation of object positions instead of computing forces
and accelerations. In the context of fluid simulation, the Posi-
tion Based Fluids (PBF) method was proposed by Macklin
and Müller [23], which builds upon the principles of PBF and
enforces incompressibility by iteratively adjusting particle
positions.

Hybrid schemes These schemes combine the advantages of
Lagrangian and Eulerian schemes by representing the motion
of the fluid flow with Lagrangian particles while computing
dynamics (forces) on an Eulerian grid.

As Figure 6, shows, to combine particles and grids, physical
values need to be mapped from particles to grids (P2G) and
from grids to particles (G2P), before and after the dynamic
simulation separately. A so-called shape function, similar to
the kernel function W for the SPH method, performs these
mapping procedures.

In the original PIC [24], only the momentum term is trans-
ferred between P and G. The later FLIP [13] transfers the
differential of momentum to obtain better dynamic effects
at the cost of stability. The Material Point Method (MPM)
introduced by Sulsky et al. [25] is another extension of the
original PIC. It adds a new dimension to fluid simulation by
considering the deformation gradient information along with
the momentum term, making it suitable for simulating a wide
range of materials, including fluids, granular materials, and
deformable solids.

Throughout the development of the PIC, FLIP, and MPM
methods, these techniques have evolved and merged to

form more advanced approaches. The Affine Particle-In-
Cell (APIC) method [26] extends the MPM framework by
incorporating affine velocity fields, which reduces numerical
dissipation and offers improved stability compared to both PIC
and FLIP. The Polynomial Particle-In-Cell (PolyPIC) [27]
method takes the MPM framework a step further by incor-
porating higher-order polynomial velocity fields, building
upon the advancements made by the APIC method. Finally,
the Moving Least Squares Material Point (MLS-MPM) [28]
method utilises moving least squares for grid interpolation
and differentiation in MPM simulations, further enhancing
the accuracy and robustness of the approach.

x
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G2P

Grid force

Advection

Shape function W
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∑
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Fig. 6 Particle-In-Cell method, hybrid scheme. This example uses
a cell-centered grid so information is stored at the yellow points.
During simulation, momentum and weight (which can be used to get
the velocity ut

I on the grid) are transferred from particles to the cell
centers. In the next step, forces are applied to grid nodes to compute
the new velocity ut+1

I . Finally, the velocity is re-transferred from
the grid to particles. When particles get their new velocities, the new
positions can be easily found by forward Euler integration.

4 Advanced computational approaches
Fluid simulation requires a high discretization resolution
to reach high visual quality. Yet, more discrete particles
or denser grids ask for more computing resources. This
section surveys approaches from recent years for improving
computational efficiency. We organise these into approaches
that use adaptive time and/or space sampling (Sec. 4.1), GPU
or CPU parallelisation (Sec. 4.2), and the more recent data-
driven approaches (Sec. 4.3). For a more extensive survey
about this area, we refer to the work of Manteaux et al. [29].
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Fig. 7 Schematic diagram of particle-based adaptivity. Particle-
based adaptivity adjusts particle size dynamically to reduce cost and
preserve detail at the same time.

4.1 Adaptive solutions

A stable, sufficiently accurate, and detailed simulation requires
adequate temporal and spatial resolution. Time steps must be
short enough to ensure stability, and high-resolution grids or
dense particles are needed to capture fine details. However,
computational cost increases with both spatial and temporal
resolution, and an overall high resolution is not always needed.
For example, time steps must be small for violent motion but
can be longer when the overall movement is slow; high spatial
resolution is needed to capture delicate splashes and sprays,
but is less important deep inside the fluid where such detail is
not visible.

As such, adaptivity uses high resolution only in the needed
time and space instances and uses low resolution elsewhere to
preserve accuracy and detail while reducing computing costs.
Figure 7 illustrates this strategy with particles as an example.
Adaptive methods can be categorized into temporal and spatial
adaptivity. Temporal adaptivity dynamically changes the time
step, either globally or locally for different parts of fluid.
Spatial adaptivity adjusts the resolution for different fluid
regions, or changes the method of discretization for a similar
effect. These two approaches are described next.

4.1.1 Temporal adaptivity

Temporal adaptivity adjusts the time step length dynamically.
A straightforward strategy is to adapt the time step globally,
i.e., use the same time step for the entire simulation domain.
The time step size is determined dynamically at each time step
under a restriction. For further performance gains, different
time steps can be used for different spatial domain zones,
thereby reducing the total number of integration steps needed.

Global time step The Courant–Friedrichs–Lewy condition
(CFL) [31] is a well-known method for determining the time

step size. Most current simulation methods compute a global
time step according to the CFL condition at each time step.
Generally, the CFL condition takes the form

C ≡ ∥uc∥∆t
∆x

⩽ Cmax, (8)

where ∥uc∥ is the speed of information propagation, ∆x is
the grid-cell size for Eulerian and hybrid simulations, or
smoothing length for Lagrangian ones, Cmax is a constant
based on the size of discrete operators, and C is the CFL or
Courant number. In practice, ∥uc∥ typically represents the
speed of sound in the material or the maximum velocity in
the simulation. The time step length ∆t is usually chosen
so that C is in the [0, 1] range. The choice of the maximum
Courant number Cmax is generally dictated by the type of
simulation algorithm being used, but it should not exceed 1.
Methods such as PIC or MPM tend to offer greater flexibility
in choosing Cmax compared to SPH. Using the same method
with an implicit time integration scheme allows for larger
Cmax values while maintaining simulation stability.

Determining an optimal value for Cmax often involves an
extensive trial-and-error process tailored to a specific scenario.
Sun et al. [32] addressed this issue in their work, where they
considered metrics related to stability of MPM simulations,
such as the deformation gradient. By using these metrics,
they were able to more effectively identify the performance
limits and improve the overall stability of simulations.

Asynchronous time integration. When dealing with sce-
narios involving both intense waves and calm regions, im-
plementing a global time step restriction can be inefficient
and wasteful. To address this, the concept of regional time
stepping was initially introduced in the SPH method by
Goswami et al. [33]. This approach subdivides the simulation
space into smaller regions, allowing each region to have
its own independent time step. Recognizing the grid-based
nature of the subdivided regions, Fang et al. [34] extended
this idea to the MPM method. In their technique, a scheduler
determines the order in which blocks are updated, while
a buffer block is employed to handle boundaries between
blocks with different time steps. This resulted in signifi-
cant performance improvements, achieving speed-ups of 9.8
compared to traditional synchronous MPM implementations.
Inspired by Fang et al. [34], Koike et al. [30] proposed an
asynchronous time integrator for Eulerian liquid simulation,
with an interpolation strategy to deal with boundaries between
different-time-step zones, and an advection scheme to prevent
seams at the boundaries. While the previously mentioned
methods effectively enable asynchronising the time step for
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Fig. 8 Schematic diagram of the asynchronous time integration scheme in [30]. Boxes refer to discretized variables such as velocity; color
represents the time step. A simulation (a) is first advanced with the largest time step (b). Next, smaller time steps are used (c, d). If values
needed for computation are calculated using a larger time step, they are interpolated to match the current step size. Once the smallest time
step is reached, it is used to overwrite previous results (e). The procedure is applied recursively to update all variables.

separate regions, they still necessitate synchronisation for
all regions at simulation time barriers. Reinhardt et al. [35]
presented a fully asynchronous time integration model for
SPH fluid animation where each particlehas an individual
time step and is processed using a priority queue.

4.1.2 Spatial adaptivity

These methods change the spatial resolution or the discretiza-
tion method in different spatial regions so as to keep fine
detail in some regions but use coarser (thus faster to compute)
detail in less important regions. Spatial adaptivity methods
are heavily dependent on the underlying discretization. We
next detail different spatial adaptive approaches for Eulerian,
Lagrangian, and hybrid methods.
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b

cd
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h

(a) Example of an octree

a b c d

e f g h

(b) Corresponding data structure

Fig. 9 Schematic diagram of an octree represented in 2D where
each cell has four children. 3D octrees have eight children per cell.

Eulerian grids. Grid-based Eulerian methods use adaptive
grid structures to achieve dynamic spatial resolution. However,
compared to uniformly distributed Eulerian grids, designing a
stencil on an adaptive grid for pressure solving to attain high-
order accuracy and forming a symmetric positive-definite
linear system that can be efficiently solved on non-symmetric
adaptive grids poses challenges.

The octree data structure is one of the approaches for
grid adaptivity that allows for changing the resolution of
axis-aligned structured grids. As shown in Fig. 9, each cell is
divided into eight equal children by cutting it in half along

each axis . Octrees have the advantage of regularity, support
fast discretization, and are simple to implement. However,
on the transition between different grid levels, octrees have
T-junctions which cause challenging numerical issues.

Losasso et al. [36] proposed the first octree-based liquid
solver using a set of symmetric differential operators, which
enables solving the Poisson equation on unrestricted octree
grids. In the octree, velocity is stored on cell faces while
pressure is stored at cell centers. The velocity divergence
∇ · u at cell centers is computed considering all cell faces f
as

∇ · u =
1

Vc

∑
f

(uf · nf )Sf , (9)

where Vc is the cell volume, and nf , uf , and Sf are the
outward-pointing normal, velocity, and area of face f , re-
spectively. The pressure gradient on each face is computed
from the pressure of the two adjacent cells using

∂p

∂x
=

p2 − p1
(∆x1 +∆x2)/2

, (10)

where ∆x denotes the cell size; and subscripts 1 and 2 denote
the adjacent cells to that face.

Dynamically adjusted octree grids also present challenges
in terms of modifying and accessing data. Setaluri et al. [37]
proposed a sparse paged grid (SPGrid) data structure that
constructs the octree as a hierarchy of sparsely populated reg-
ular grids instead of a standard pointer-based tree. Goldade et
al. [38] recognized the limitations of the first-order accuracy
of the velocity field for octrees and contributed a variational
finite difference discretization method to it, enabling a more
efficient viscous simulation. Ando and Batty [39] focused
on using octree grids to enhance surface detail exclusively.
This approach further reduces implementation complexity
while retaining the benefits of octrees. While the particular
attention to maintaining data order for efficient computation
is advantageous, it also presents a challenge in system design.
Shao et al. [40] noted this issue and identified an underuti-
lized potential within the regular Cartesian grid structure.
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They ingeniously integrated the single instruction, multiple
data (SIMD) approach with a multigrid structure, aiming to
streamline and minimize the needed multiplications. Their
method showed significant speed-ups of 2.0 to 14.6 times
compared to contemporary adaptive octree solvers found in
commercial software for large-scale simulations.

Several approaches have been inspired by and extended
from the octree grid concept. These works aim to improve
efficiency and accuracy in various ways. Ferstl et al. [41]
proposed a hexahedral finite element discretization multigrid
solver on adaptive octree grids. By specially treating boundary
conditions on the free surface, they achieved second-order
accuracy on the surface. Aanjaneya et al. [42] focused on
enhancing pressure projection on octrees. They used a finite
volume power diagram to accurately recover irregular embed-
ded boundaries that cross grids, reaching both second-order
accurate and symmetric positive definite (SPD) conditions.
Xiao et al. [43] introduced an adaptive staggered-tilted (AST)
grid for conducting adaptive fluid simulations on a regular
discretization. By adding a tilted grid to an octree structure,
they avoided T-junctions and further improved the adaptivity
of the simulation.

Some methods in fluid simulation employ multiple grids
with different resolutions or structures to simulate various
parts of the fluid, later compositing these elements together.
This approach contrasts with using a single adaptive grid for
the entire fluid domain. Gao et al. [44] devised a technique
that divides the domain into nested partitions with different
resolutions, effectively handling multi-resolution fluid behav-
ior. English et al. [45] used overlapping Cartesian grids with
varying scales and rotations to represent the fluid domain,
constructing a local Voronoi diagram for managing pressure
projection near grid interfaces. Li et al. [46] introduced an
adaptive relaxation method for kinetic approaches, enabling
fluid sampling at arbitrary overlapping resolutions and pro-
viding efficient representation of fluid behavior across a wide
range of scales.

While many adaptive methods that use single or multiple
grid structures can disrupt the uniform data structure of the
original Cartesian grid, some works have managed to strike
a balance between maintaining uniformity and introducing
adaptivity. Zhu et al. [47] used a uniform grid within a cubical
region of interest, extending the grid into the far-field by
stretching cells along an axis. This approach retains the bene-
fits of a uniform grid while providing adaptivity in specific
areas. Ibayashi et al. [48] proposed a technique for dynam-
ically warping uniform grids, combining the advantages of
both unstructured and structured grids.

Lagrangian methods. Particle-based Lagrangian ap-
proaches, such as SPH, achieve spatial adaptivity through
defining a desired resolution for each particle with a sizing
function. By adjusting particle sampling through local merg-
ing or splitting of particles (as shown in Fig. 7), these methods
are able to dynamically change the resolution, offering more
efficient and accurate simulations while focusing on areas of
interest.

The early study of adaptive SPH can be traced back to
the work of Adams et al. [49]. They introduced a sizing
function based on geometric local feature size that allows
focusing computational resources on geometrically complex
regions. Yet, adaptive particles yield density errors due to
different resolution scales, which can lead to instabilities.
To address this issue, Orthmann and Kolb [50] proposed a
temporal blending technique to limit the temporal rate of
resolution change, thereby significantly reducing the error.
With the advent of more strictly incompressible implicit
SPH approaches, the size difference between neighbouring
particles needs to be kept even lower to avoid instability.
Winchenbach et al. [51] achieved this by forming a continuous
transition of particle resolution by tuning the splitting and
merging pattern, and introducing mass redistribution between
particles. A simplified version of temporal blending is also
incorporated. In their method, splitting supports arbitrary
1 : n patterns. Merging uses an (n+1) : n pattern where one
particle is merged into the others. Mass redistribution divides
the excessive mass mex of one particle i equally among n
particles. The physical attributes A of the mass receiving
particles j are updated to A∗j by

A∗j =
mex

n Ai +mjAj
mex

n +mj
. (11)

Zhai et al. [52] took inspiration from this method to pro-
pose an adaptive scheme for Power Particles. Winchenbach et
al. [53] proposed a semi-analytic boundary handling approach
to solving the problem that particle-based boundary repre-
sentation is difficult to couple with fluid particles with very
different sizes. Lately, Winchenbach and Kolb [54] introduced
optimized refinement for splitting patterns with a discretized
objective function that models the error, thereby significantly
improving stability. Neighbour search for adaptive particles
also needs to be specifically optimized. A particle in an
adaptive simulation can have a widely varying number of
neighbours within a given distance h, which are costly to
compute. To solve this, Winchenbach and Kolb [55] proposed
constrained neighbour lists to obtain neighbours in a user-
specified range. To further accelerate the neighbour search
process, Winchenbach et al. [56] introduced a sparse data
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Fig. 10 Adaptive fluid simulation combining non-graded octrees
and adaptively sampled particles [60].

structure for efficient neighbour search and ray tracing for
adaptive SPH based on hash-maps.

Among vortex methods, ways to solve the Poisson problem
efficiently with adaptive data structures were also studied. The
Poisson problem is anN -body problem, where the interaction
between each object and the rest of the objects is considered.
Naively solving this problem requires O(N2) computations,
so adaptive methods are used to reduce this complexity.
The Fast Multipole Method (FMM) [57] uses an octree to
solve the N -body problem approximately in O(NlogηN)

where η ∈ {0, 1} by approximating interactions between
far-away bodies by the body centers instead of computing
all pairwise interactions. Zhang and Bridson [58] proposed a
novel Particle-Particle Particle-Mesh method, which is easier
to implement and parallelize on GPUs, and applied it on
a vortex segment solver. Angelidis [59] used FMM with
added support for non-uniform particle sampling to simulate
incompressible smoke with vortices.

Fig. 11 A massive and sparse FLIP scene simulated using an effi-
cient GPU parallel implementation [61] achieves one frame/second
on an NVIDIA® Quadro GP100 GPU with 2 million particles and a
3360× 160× 2272-cell grid.

Hybrid methods. Hybrid methods offer greater flexibility
in implementing adaptive schemes due to their intrinsic

Fig. 12 GPU parallel computing accelerates complex large-scale
high-resolution scene simulation [62].

combination of Lagrangian and Eulerian representations for
fluid simulation. Ando et al. [63] applied the particle splitting-
collapsing scheme, similar to traditional Lagrangian adaptive
mechanisms, to adjust the granularity of fluid representation
in relation to the distance to the fluid surface for FLIP. They
used the finest particles to represent splashes and sheets.
Ando et al. [64] later introduced an adaptive liquid solver
on tetrahedral meshes, which combined a variant of FEM
with FLIP advection, adapting both the size of the particles
and that of tetrahedral meshes coherently for more efficient
simulation. In highly stable situations, Yue et al. [65] explored
the possibility of simulating the interior area as soft continuum
materials to reduce computational costs at the solver level.

To further save on computation costs, more recent hybrid
approaches aimed to ‘hollow’ the inner area of the simulated
fluid by using Eulerian simulation only, with particles applied
near the surface. Chentanez et al. [66] proposed coupling pure
Lagrangian and Eulerian methods to simulate single fluid
bulks, addressing the issue of fluid representation transition
and coupling stability between two different fluid solvers.
However, coupling two different solvers can still be prone to
instability, so Ferstl et al. [67] later returned to adaptive FLIP
simulation using FLIP particles within a narrow band of the
fluid surface. Nakanishi et al. [60] focused on constructing
a proper data structure to adaptively merge and split octree
grids for FLIP, adapting the size of the background grid only
near the fluid surface (Fig. 10 ).

Sato et al. [68] took adaptivity to the extreme by extending
Ferstl et al.’s work [67] to replace some of the fluid surface
using level set surfaces via an introduced transition function.
This idea represents a breakthrough in the field, enabling a
seamless merging of physical simulation details and large-
scale representations. To address the setback of inefficient,
highly-dissipative wave propagation during the transition of
surface representation, Huang et al. [69] employed hybridiza-
tion of volumetric and surface-based advection-projection
discretizations, with the Boundary Element Method (BEM)
applied for long-lasting waves.
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Fig. 13 Schematic diagram of different parallelization types. A single processing unit can be a multicore-CPU or a GPU. A CPU has few,
but high-processing-power, cores. A GPU has weaker, but many more cores which can result in better performance for repetitive operations.

4.2 Parallelization

Parallelization of simulation algorithms offers a promising
pathway to augment fluid simulation speed by capitalizing
on the existing parallel computation capacities of modern
GPUs and CPUs. We divide such methods into three classes:
parallelization on a single processing unit (multi-core CPU or
a GPU); parallel techniques with multiple processing units,
especially multiple GPUs; and using distributed systems (see
also Fig. 13).

4.2.1 Single processing unit

Parallelization can be most easily achieved on a single process-
ing unit such as a multicore CPU or a GPU. Pure Eulerian and
Lagrangian simulation techniques can be readily parallelized
under these conditions. However, hybrid methods necessitate
meticulous measures due to their composite nature of particles
and grids. The Voxel Data Block (VDB) method pioneered by
Museth et al. [70] offers a robust framework for manipulating
sparse volumetric data. Wu et al. [61] successfully integrated
this approach into the FLIP method by resolving the paral-
lel particle-to-grid rasterization challenge inherent in hybrid
methods (Fig. 11). Gao et al. [71]accomplished a similar
integration for MPM based on the SPGrid structure [37],
wherein the particle-to-grid transfer mechanism was a crucial
aspect that needed resolution. Furthermore, Chu et al. [72]
applied and optimized the Schur complement theory for FLIP
simulations. They divided the simulation domain into multi-
ple subdomains with face edges and cross-points to establish
a parallel-friendly data structure. Aiming to streamline the
development of parallel programs, Hu et al. [73] proposed
a new data-oriented programming language – Taichi. This
language facilitates efficient authorship, access, and main-
tenance of sparse data structures, and is accompanied by a
compiler designed to automatically optimize and parallelize
code on CPU or GPU platforms. Subsequently, Hu et al. [74]
enhanced Taichi to include bit-level memory control over
numerical data types.

4.2.2 Multiple processing units

Multi-GPU techniques are the approach of choice for scaling
up the simulation size. In this case multiple GPUs cooperate
with the CPU(s), together forming a heterogeneous computing
structure. The most challenging point for this structure is to
reduce both the frequency and the amount of the data exchange
between CPU-GPU and GPU-GPU, which is very expensive.
Liu et al. [75] initially introduced the Schur complement
method to the graphics community as a strategy to tackle this
issue. As previously outlined, the Schur complement method
has the significant benefit of segmenting the entire simulation
domain into several regions. Each region can be efficiently
computed using a single GPU, with the interaction boundary
between these regions elegantly managed by the CPU(s). This
setup eliminates the need for data transmission from a GPU
to the CPU and subsequently to another GPU. Meanwhile,
Wang et al. [76] took a different approach by directly adapting
the MPM algorithm structure to fit a multi-GPU framework.
They accomplished this by developing a particle data struc-
ture to encourage coalesced memory access and circumvent
atomic operations during particle-to-grid data writing. Addi-
tionally, they proposed a kernel fusion strategy to diminish the
number of GPU kernel launches and reduce global memory
requirements. Chen et al. [62] further optimized kinetic meth-
ods for scenarios containing complex solids (Fig. 12). They
introduced a multi-kernel launch methodology for parallelism
enhancement and a parametric cost model to improve per-
formance optimization. This exploration of fluid simulation
parallelization demonstrates the richness and versatility of
strategies within this domain.

4.2.3 Distributed systems

In the pursuit of scalability in fluid simulation, the poten-
tial of distributed platforms is harnessed to delegate tasks
across multiple computing nodes. These distributed simula-
tions frequently utilize automatic task allocation to ensure
efficient processing. Biddiscombe et al. [77] laid a crucial
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groundwork by providing a GUI-based interface and anal-
ysis system for high-performance computing (HPC). Their
innovative approach involved substituting the I/O layer in the
Hierarchical Data Format Version 5 (HDF5) with a parallel
data transfer driver, thereby enabling parallel simulation,
analysis, and GUI operation concurrently on one or multiple
devices. Mashayekhi et al. [78] developed a system that au-
tomatically distributed tasks across many multi-core cloud
computing nodes to dynamically manage fluid partitions.
Shah et al. [79] proposed a load balancing scheme for sparse
fluid simulations. Qu et al. [80] outlined a simple yet effec-
tive solution to accelerate distributed fluid simulations which
uses micro-partitioning to greatly improve load balance and
communication performance.

4.3 Data-driven approaches

Although great progress has been made in space-time adap-
tive and parallel computing in recent years, the simulation of
fluid by traditional physical methods still requires high com-
putational resources. Strictly limited time steps are needed to
ensure simulation stability when solving governing equations
in a discretized space. Implementing efficient and accurate
end-to-end fluid simulation pipelines is also technically highly
challenging. Data-driven approaches provide an alternative
solution for real-time interactive fluid simulation, which we
outline next.

4.3.1 Model reduction
Model reduction is achieved by precomputing a set of simu-
lation sequences to obtain a low-dimensional representation
of fluid motion, allowing for efficient and fast re-simulation.
Treuille et al. [81] first introduced model reduction to fluid
simulation via Galerkin projection. They constructed vector
field basis functions for fluid dynamics based on principal
component analysis (PCA) to generate real-time fluids. For
this, they computed the Galerkin projection of the differential
equation F onto the reduced dimensional space as

F(r) = P ◦ F(v) ◦ P−1. (12)

The high-dimensional space vector v ∈ Rn and the low-
dimensional space vector r ∈ Rm are transformed by the
projection operator P (v) = r and its inverse P−1(r) = v.

Later, improvements such as the extension of the Galerkin
projection to non-polynomial systems [82] and a multidimen-
sional cubature method supporting semi-Lagrangian advec-
tion [83] were proposed. De Witt et al. [84] used Laplace
eigenfunctions instead of PCA eigenvectors. The method
performs a Galerkin projection of the vorticity form of the
Navier-Stokes equations and is therefore not data-driven but

physically driven. Liu et al. [85] further stabilized the method
using a variational integrator, providing structure coefficients
without artifacts. Zhai et al. [86] proposed a model reduction
method based on empirical modal decomposition (EMD),
which can decompose the flow field into various frequency
components as the basis vectors for model reduction. The
method can extract the characteristic parameters of the origi-
nal fluid to achieve inverse modeling. To reduce the memory
needed to store basis functions, Cui et al. [87] generalized
the dynamics to Neumann boundary conditions using ana-
lytic eigenfunctions and the Fast Fourier Transform (FFT).
This approach allows the use of thousands of basis functions
to produce more convincing and fine-grained fluid dynam-
ics. Using this, they proposed an analytical extension of the
Laplace eigenfunction method [88]. This spiral-spectral fluid
simulation method is capable of producing realistic turbu-
lent effects over a variety of radial domains, both surface
and bulk. Mercier and Nowrouzezahrai [89] constructed an
anisotropic vector field basis function that can accommodate
curved boundaries and coupling with dynamic obstacles. The
method sacrifices a physically accurate solution for a visually
plausible simulation. A reduced model for fluids based on
incompressible polynomial vector fields was proposed by
Panuelos et al. [90] to reduce the computational cost of highly
viscous fluids.
4.3.2 Machine learning
Machine learning methods have brought about a revolution
in physics-based fluid simulation, with deep learning tech-
niques particularly proving the possibilities of data-driven
approaches. Ladicky et al. [91] expressed physics-based fluid
simulation as a regression problem and used a regression
forest algorithm to approximate the dynamic behavior of
fluid particles. This method strongly generalizes to simulating
large-scale scenes in real time. Raveendran et al. [92] used
interpolation on existing fluid simulations to rapidly generate
a large number of new simulation results. Thuerey [93] im-
proved this method using a signed distance function to fully
automate the matching process. Recently, Oh and Lee [94]
proposed a temporal interpolation network based on optical
flow and forward advection that can derive high frame rate
smoke simulations from low frame rate simulations.

With the development of deep learning, Convolutional
Neural Networks (CNNs) [96] and Artificial Neural Networks
(ANNs) [95] were introduced to solve pressure calculations in
fluid simulations and accelerate the pressure projection step
(Fig. 14). Wiewel et al. [97] proposed an LSTM architecture
to predict the evolution of fluids over time. They used CNNs
to map the 3D fluid simulation to a low-dimensional latent
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Fig. 14 Using Artificial Neural Networks (ANNs) to solve the
pressure projection [95]. The network inputs feature vectors extracted
from training data to output pressure as close as possible to the
ground-truth one.

Fig. 15 The position information of the fluid is extracted from
example videos as a reference (left). The 3D simulation is projected
onto the screen space (middle). The difference between the two is
next iteratively reduced (right) [99].

space, thus greatly speeding up the simulation. They further
improved the method using latent space subdivision [98],
allowing for more stable predictions of complex long-term
series. Takahashi and Lin [99] proposed a framework capa-
ble of extracting physical parameters from real fluid videos
and applying them to new scenarios to generate the user’s
ideal fluid behavior (Fig. 15). Eckert et al. [100] created
ScalarFlow, the first large-scale volumetric dataset for real
smoke reconstruction for computer graphics and machine
learning. ScalarFlow also makes an important contribution
by providing reliable benchmark data and evaluation criteria.

5 Fluid coupling with multi-materials
A key topic frequently mentioned in fluid simulation is the
coupling of fluids with their environment composed of differ-
ent materials. Indeed, in computer graphics, fluids are mostly
attractive due to the way they interact with their surroundings,
as the attention of the spectator is arguably attracted by the
interfaces, or boundaries, between fluids and the rest of the vir-

tual world. Moreover, the behavior of fluid is strongly affected
by how these surrounding factors themselves evolve. In this
section, we explore this topic with the focus on recent works
that aim to accurately and efficiently model the coupling with
multiple complex materials. We split the discussion into three
separate subtopics: meshless methods (Sec. 5.1), mesh-based
methods for handling fluid boundary conditions in the case of
solid boundaries (Sec. 5.2), and solutions designed to model
more complex couplings emerging for multiple boundaries
(Sec. 5.3).

5.1 Meshless Methods

Particle based boundaries For most Lagrangian simula-
tion approaches, the solid boundary sampled by so-called
boundary particles is the main enabler of inter-particle interac-
tions between fluid and other objects (Fig. 16). To couple fluid
with solid boundaries, early methods used various approaches
such as collision detection and ghost particles. Becker et
al. [101] computed the contact point between the fluid and
solid particles and controlled the normal and tangential ve-
locities to impose boundary conditions. Yang et al. [102]
facilitated the interaction between SPH fluid and nonlinear
FEM deformable solid by sampling proxy particles across the
boundary, and handled fluid-solid coupling with momentum-
conserving collisions. Schechter and Bridson [103] used the
ghost particle method to generate a thin layer of ghost particles
in the nearby solid and air, reducing numerical errors caused
by non-uniform particle distributions near boundaries. He et
al. [104] generated staggered particles between neighboring
particles to resolve the problem of shape functions losing
the Kronecker delta property, thereby supporting various slip
boundary conditions.

∂Dx
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h

∂Ωfs
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Fig. 16 Schematic diagram of fluid-solid coupling using meshless
methods. Left: Discretization of the SPH approach in the coupling
with materials. Fluid and solid particles both contribute to the
boundary handling. Ω denotes the domain, f denotes fluid, s denotes
solid, ∂Dx denotes the surrounding spherical neighborhood. Right:
Solid domain in the neighbourhood of a fluid particle represents the
contribution of the boundary density value at the particle position.

To further reduce computing time and numerical errors,
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Akinci et al. [105] proposed a versatile and efficient method
for SPH boundary handling without the need for collision
detection or generating extra particles. The method resolved
to directly handle the problem of uneven boundary sampling
by evaluating a relative contribution of each boundary particle
using Shepard interpolation (Fig. 17) given by

ρfi = mfi

∑
j

Wij +
∑
k

Θsk (ρ0i)Wik, (13)

Θsi (ρ0) = ρ0Vsi (14)

to compute the correct density without depending on bound-
ary sampling. In the subscripts, f and s respectively represent
fluid and solid particles, ρ0 denotes the fluid rest density,
and Θs computes the contributions of a boundary particle
according to its volume. Compared to the volume of fluid par-
ticles with the same size Vf , the volume of solid particles Vs
varies based on the local solid sampling distribution. Denser
sampled regions have smaller solid volumes to maintain in-
teraction stability. At the mere cost of a one-time evaluation
of the above procedure, thin boundary geometries with only
one layer of particles and non-manifold geometries can be
supported.

Fig. 17 Large-scale fluid-solid interaction [105]. A boat with rag-
dolls sails under a bridge (left). As the flow rate increases and the
bridge is released, a second boat impacts the bridge.

The method of Akinci et al. [105] has gained widespread
popularity due to its simplicity and efficiency. Macklin et
al. [106] applied this method to unify various physical be-
haviours using a single particle system for real-time applica-
tions built on the PBD. Cornelis et al. [107] used the concept
of [105] to couple high-resolution FLIP with a low-resolution
implicit SPH method. Peer et al. [108] built an implicit for-
mulation for the simulation for the incompressible linearly
elastic solids embedded in the ISPH pressure solver which
further enables a pressure-based boundary treatment using the
method of [105]. Takahashi et al. [109, 110] integrated the ap-
proach of [105] into their multilevel particle-based solver, in
which they adaptively assigned various roles to the particles,
to guarantee the solvability of the linear system in a unified
manner regardless of the arrangements of the particles.

Although Akinci et al. [105] eliminated a variety of artifacts
of particle-based fluid-rigid coupling, numerical issues, such
as penetration across the boundary, and the lack of higher-
order accuracy of pressure due to the mirroring scheme
of physical values from fluid to boundary particles, still
limit the time step size and stability under drastic scenarios.
Shao et al. [111] treated surface and inner boundary particles
differently to prevent particle deficiency and penetration
issues. Instead of using the state of density compression
denoting the magnitude of the pressure force, Band et al. [112]
introduced the notion ‘volume compression’ into coupling
problems, where the rest volumes rather than the mass of
boundary particles are applied to derive a continuous pressure
force:

Fp
fi

= −Vfi
∑
j

Vj (pfi + pj)∇Wfij , (15)

which considers fluid samples fi with all fluid and boundary
neighbours j of the fluid sample fi in the same way. The
results of their experiments show a significant improvement
of stability and a wider range of possible time step sizes.
Gissler et al. [113] resolved the stability issue in [105] by
interlinking an artificial pressure solver for boundary particles
with the fluid pressure, achieving a fully dynamic two-way
coupling (Fig. 18). Truong et al. [114] prevented penetration
by treating particle collisions with particle merging and
splitting.

Fig. 18 SPH fluid (43.8M particles) in a terrain (50M static rigid
particles) is two-way coupled with a water wheel that is connected
to a gate via gears and a chain [113]. The gears, chain, and water
gate are modeled with 2.3M dynamic rigid particles. Up to 90k
simultaneous rigid-rigid contacts are handled.

Unsampled boundaries. The influence of a solid model
upon the surrounding fluid particles can also be handled
carefully using a mesh-based (Eulerian) solid representation
for a stable and effective coupling. Vines et al. [115] coupled
Lagrangian vortex particles to mesh-based solids by generat-
ing vorticity at the solid boundary. Fujisawa and Miura [116]
considered the influence of triangle mesh boundaries on the
integration of a kernel function for SPH without the need for
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boundary particles. However, the method cannot handle solid
boundaries with complex geometry and is computationally ex-
pensive compared to [105]. Chang et al. [117] extended [116]
to support arbitrarily shaped solid boundaries by converting
the volume integral inside the solid boundary to a surface
integral. Koschier and Bender [118] presented the ‘density
maps’ method, precomputing a continuous boundary density
field to efficiently handle arbitrary boundary geometries. Ben-
der et al. [119] also targeted the expensive renormalization
process in [116] by storing the volume contribution from the
boundary on a spatial grid that can be efficiently queried at
runtime.

5.2 Mesh-based Methods

Another mainstream approach for fluid simulation is to use
Eulerian and Lagrangian meshes as shown in Fig. 19. Yet,
loss of mass and difficulties in handling drastic deformations
often limit the practicability of these approaches. We organize
mesh-based methods in several classes, as follows.

Lagrangian/Eulerian meshes Early on, Clausen et
al. [120] used fully Lagrangian tetrahedral meshes to sig-
nificantly reduce numerical viscosity in simulations with
relatively low resolutions and long time steps. Azevedo and
Oliveira [121] proposed a semi-Lagrangian method that intro-
duced curvilinear grids and achieved more accurate boundary
conditions in simulations with moderate resolutions. Besides
these Lagrangian-meshed methods, Teng et al. [122] later in-
corporated the previous work into an Eulerian fluid solver and
resolved complex contact scenarios between multiple solids
and fluids. Recently, Takahashi and Lin [123] formulated
the implicit viscosity integration as a minimization problem
in which the volume fractions are consistently evaluated to
handle sub-grid details.

Ωf

Ωs

Ωf

Ωs

Fig. 19 Schematic diagram of fluid-solid coupling using mesh-
based methods. Left: A sample MAC grid used in the fluid-solid
coupling. Grey dots denote nodes of the solid regions. Fluid pressure
values are stored at cell centers. Fluid velocity components are stored
on cell faces. Right: A coupled solid-fluid system with the MPM
method which allows to discretize the system with particles on a
Cartesian grid and update the pressure based on DOFs on the grid.

Focusing on the poor boundary conditions of irregular
boundaries defined under coarse grids, the cut-cell approach
became a major trend to improve convergence for Neumann
boundary conditions. Fluid grid cells are clipped against
the solid boundary represented by a triangle mesh, forming
several distinct polyhedral sub-cells at each time step, allowing
small details to be handled without refining or rotating the
grid. Based on the multigrid scheme proposed by Chentanez
and Mueller-Fischer [124] with a variational discretization
compatible on all levels, Weber et al. [125] presented a cut-
cell-based multigrid scheme on staggered grids that is second-
order accurate for Neumann boundaries. To better capture the
flow across thin solids and gaps, Azevedo et al. [126] further
proposed a topology-preserving pressure projection scheme
on cut-cell meshes. Following this, Zarifi and Batty [127]
used cut-cell discretization for the two-way fluid-deformable
interaction, enforcing the free-slip boundary condition at the
actual interface. Their method computed the pressure based
on the MAC grid of three dimensions x,y,z as∫
∂Ωf

∇pdn ≈
∑

β∈{x,y,z}

(
S (Ωβ)

∂p

∂β
(Ωβ) + S (Ω−β)

∂p

∂β
(Ω−β)

)
(16)

where Ω contributes to the domain region and S(Ω) is the
area of the domain region. The cut-cell is further extended by
Chen et al. [128] to represent sub-grid structures on the free
surface of the liquid, with a new iso-surface Poisson solver
with desirable properties such as second-order accuracy and
symmetric positive definiteness. Tao et al. [129] introduced an
algorithm based on VEM for simulating fluid flow on cut-cell
meshes, which effectively handles complex geometries and
accurately captures intricate features, including thin tubes
and extremely thin walls.

Material Point Method Since its introduction to computer
graphics, the Material Point Method (MPM) has garnered
significant attention. By integrating features of Lagrangian
particle representation and Eulerian grid representation, MPM
offers a powerful technique for coupling fluid and solid simu-
lations. However, conventional MPM solvers have drawbacks
such as computational inefficiency and limited capability to
handle self-contact collisions, despite their physical realism
and geometric convenience. To improve upon these, Gao et
al. [130] presented an adaptive Generalized Interpolation
Material Point (GIMP) method with extensively optimized
particle-grid transfer memory efficiency and parallelism. Hu et
al. [28] proposed Compatible Particle-In-Cell (CPIC) which
enables the handling of discontinuous material points and
infinitely thin boundaries by leveraging the relative positions
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of grid nodes and particles. They also embedded the Mov-
ing Least Squares (MLS) method into MPM to double the
computation speed. However, such MPM approaches do not
address the inconsistent tangential velocities at the interface
between multiple materials, leading to visually unpleasant
artificial stickiness. To alleviate this, Fang et al. [131] pre-
sented a ghost matrix operator-splitting scheme for monolithic
coupling between incompressible fluids and elastic solids and
designed a novel interface quadrature cut-cell MPM formula-
tion for free-slip boundary condition. Subsequently, Cao et
al. [132] extended some ideas of [131] from incompressible
to compressible flow.

Monolithic schemes Monolithic solvers simulate various
materials and their interactions within a unified system that
includes boundary conditions. These schemes naturally en-
sure a more robust interface of large density ratios and enable
large time steps. They not only occur in SPH methods [113]
but also in the mesh-based (e.g., MPM) methods [131, 132].
Aanjaneya [133] proposed a monolithic solver for efficiently
simulating the interaction between rigid bodies and incom-
pressible fluids. The solver remains robust even in poorly
conditioned scenarios with large density ratios between the
solid objects and the fluid. Lai et al. [134] introduced a V-cycle
of the Full Approximation Scheme (FAS) multigrid method
to solve the linear complementary problems to achieve better
scalability and efficiency compared to previous methods.
Takahashi and Batty [135] proposed a monolithic pressure-
viscosity-contact solver to simulate the complex interactions
between rigid bodies and liquids, efficiently managing in-
compressibility and offering the option for implicit viscosity
integration in liquids. It also addresses contact resolution for
rigid bodies and handles mutual coupling.

Fig. 20 Three-way coupling method to simulate surface-tension-
dominant solid-liquid contact [136].

Partitioned schemes Compared to the monolithic scheme,
partitioned schemes can deal more flexibly with multiple
co-existing solvers by alternating between the solid and
fluid while applying suitable boundary conditions. Akbay et
al. [137] employed fluid and solid solvers as independent

components with restricted interfaces, promoting modularity
and facilitating code reusability. Lee et al. [138] used a parti-
tioned methodology to connect a coarse background Eulerian
grid with a fine ALE mesh in their simulation framework for
character-water and hair-water interactions.

Recently, several coupling approaches for the special treat-
ment of fluid have emerged. Brandt et al. [139] modeled fluids
and deformable objects as incompressible media avoiding
expensive operations such as interface tracking and boundary
condition handling. Ruan et al. [136] used a three-way cou-
pling method, employing a thin liquid membrane to model
contact between solid objects and fluid driven by strong
surface tension. (Fig. 20).

surface tension force

Darcy-Forchheimer Drag Force

When hairs are fully 
submerged in liquid, their 
motion is affected by the 
flow of the surrounding 
liquid,

Adhesive/sticking forces

Flow Drag force

Surface tension

Adhesive force

Liquid

Hair

Fig. 21 Schematic diagram of wet hairs. Left: Wet hairs with a thin
liquid layer flowing over their surface, and their motion is influenced
by the surrounding liquid flow. Middle: The proximity and collision
between wet hairs cause the adhesive force and contact force between
hairs. Right: Cohesion of wet hair. Surface tension creates liquid
bridges between closely positioned wet hairs.

5.3 Coupling with complex boundaries

Besides interacting with the dynamic or static boundaries of
surroundings composed of rigid or elastoplastic materials,
fluids often interact with other solid matter with complex
and diverse physical attributes. Such cases require intricate
boundary models and corresponding solvers. Next, we discuss
recent advances in fluid coupling with thin film surfaces and/or
porous materials including hair, cloth, sponges, and sand.

Strands and cloths Coupling between hairs and fluid is
complex due to the wetting of hairs. Such phenomena are
shown in Fig. 21. Rungjiratananon et al. [140] used an Eu-
lerian approach to capture hair porosity and wetting effects,
and a Lagrangian approach to simulate individual hair strands
and their interactions, resulting in a detailed and dynamic hair
simulation. Chen et al. [141] proposed a real-time painting
system that aimed to generate realistic paintings by simulating
the interactions among the brush bristles, paint, and canvas.
Fei et al. [142] proposed a multi-component framework to



18 X.K. Wang et al.

model wet hair. PIC and Kirchhoff Rods were applied to
model fluid and the hair separately. A height-field was in-
troduced to represent the liquid volume around each hair
strand, considering the wet condition. Fei et al. [143] next
extended the fluid attributes to compressible, shear-dependent
liquids. A modified second-order Coulomb cone model was
also designed to capture cohesion and friction during strand
collisions. Lee et al. [144] used a tetrahedral volume mesh to
embed hair, enabling the hairs to adhere to their embedded
positions, and facilitating simulations with millions of hairs
during water-hair interactions.

For the interaction between cloths and fluid, Huber et
al. [145] proposed an efficient method for two-way interac-
tion between particle-based fluid and thin triangular meshes,
enabling cloth-fluid coupling even at large time steps. Jiang et
al. [146] created an anisotropic hyperelastic model that dis-
tinguishes the response to manifold strain, shearing, and
compression in orthogonal directions. This model facilitates
the coupling of various materials such as elastic surfaces,
curves, fluids, and granular materials. Fei et al. [147] in-
troduced a method for simulating the intricate dynamics of
woven or knit fabrics, both partially and fully saturated, in-
teracting with liquids, using the method of Jiang et al. [146]
for contact and collisions. To simulate stain formation and
evolution on cloths, Wang et al. [148] developed a pigmented
solution by utilizing a homogenization process that com-
bines inhomogeneous and/or anisotropic properties into bulk
anisotropic diffusion tensors. Zheng et al. [149] formalized
the spreading of stain in woven fabric into in-yarn diffusion
and cross-yarn diffusion, and introduced a triple-layer model
to manage wetting and wicking calculations.

Sponge-like porous materials Patkar and Chaudhuri [150]
simulated liquid flow within the porous object with a deform-
ing unstructured mesh and modeled liquid diffusion based on
saturation, as well as allowing the liquid to be absorbed by,
or leave, the solid.

Thin film surfaces. Real-life situations often involve sur-
face flow phenomena, such as rainwater cascading down a
tree trunk or the gradual progression of a water front in a
shower room. For such flows, Vantzos et al. [151] proposed
a triangle mesh model for simulating the motion of a thin
viscous fluid film on a curved surface. The model includes
discretization for curvature and advection operators to ensure
accurate simulation results. Ren et al. [152] expanded the
standard shallow-water flow model to accommodate general
triangle meshes. They introduced a feature-based bottom

friction model, allowing for the capture of non-viscous flow
motion along edges and creases on detailed 3D meshes.

Fig. 22 Soluble and insoluble materials show different phenomena
when coupled with fluid. Soluble and wettable granular materi-
als [153].

Granular materials Such materials, e.g., sand, can them-
selves exhibit flow-like behavior. In addition to their porous
behavior, simulating dissolution of granular materials also
attracted much attention. Yan et al. [154] combined a hy-
poplastic model with SPH to simulate granular materials
diffusing into fluid. Yang et al. [153] integrated the phase-
field method to simulate liquids and multiple types of solids
with dissolution achieved by evolving the granular particles’
concentration and phase (Fig. 22). Tampubolon et al. [155]
used continuum mixture theory to simulate water-sand cou-
pling in MPM where different phases are coupled by mo-
mentum exchange. Gao et al. [156] modeled the motion of
solid sediment particles inside fluids with MPM. Sediment
was modeled by Drucker-Prager elastoplasticity with two-way
coupling between sediment and fluid being achieved. He et
al. [157] proposed position-based constraints for granular
flows, using cohesion and friction models that vary across
space, with cohesion affected by water saturation. Takahashi
and Batty [158] simulated two-way coupling between rigid
bodies and continuum granular materials or liquids with a
monolithic solver that combines pressure, friction, and con-
tact interactions. Gao et al. [159] used a hybrid scheme to
accurately simulate the behavior of discontinuous fluid-like
substance. This approach integrated an affine particle-in-cell
solver with density fields, enabling transformations across
granular particles, dust clouds, powders, and their mixtures
within a unified framework.

6 Multiphase liquids
The real world is replete with complex fluid phenomena such
as dissolution, dispersion, and Rayleigh-Taylor instabilities,
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all of which are closely tied to multiphase environments.
The study of multiphase fluid simulation, a distinct subject
within Computational Fluid Dynamics (CFD), has garnered
significant attention in the realm of computer graphics. We
next overview this topic focusing on liquid-liquid interactions.
We group various phenomena and their corresponding sim-
ulations into non-mixing fluids (Sec. 6.1) and mixing fluids
(Sec. 6.2) based on whether a clear immiscible interface can be
formed between two different phases. For non-mixing fluids,
we classify their simulations according to the discretization
methods used. We also survey recent methods by grouping
them into two categories: mixture models where phase veloc-
ities are separately calculated, and non-trivial-diffusion based
models where phase velocities are taken equally.

Fanti

Fig. 23 Schematic diagram of non-mixing fluids. The lower-left
part shows the anti-penetration force (Fanti) which is applied to
particles in opposite directions along the surface normal. The em-
bedding 3D fluid mesh can be re-tessellated in order to accommodate
vertex displacement and produce changes in the interface topology.

6.1 Non-mixing fluids

Recent methods for simulating non-mixing fluids in-
clude particle-based methods, e.g., SPH [160], PBF [161],
MPM [162], and mesh-based methods [163–166]. Phases in
non-mixing fluids typically do not merge together. Non-
mixing fluid phases inherently resist fusion, creating chal-
lenges in (a) tracking the interfaces between different phases
and (b) accurately calculating force interactions between
phases at liquid-liquid or liquid-solid interfaces. The unique
properties of gas-liquid interfaces are discussed separately in
Sec. 7.

SPH simulations of multiple fluids, particularly those with
high density ratios, can produce erroneous interface tension
and a non-physical separation between the fluids. In response
to this issue, Solenthaler and Pajarola [160] modified the stan-
dard SPH equations to account for the density discontinuity
across the interface. They used an SPH density interpola-
tion formulation ρi = mi

∑
j W (xi − xj , h) instead of the

standard one ρi =
∑

j mjW (xi − xj , h).

Alduán et al. [161] proposed a versatile simulation frame-
work based on PBF methods designed to address VFX pro-
duction demands. On the phase interface, they used an SPH
density interpolation formulation which is similar to the
method in [160]. Subsequent PBF calculations were also
modified using this uniform-density formulation. High vis-
cosity was handled by breaking the XSPH calculation into
multiple lower-viscosity stable iterations. The surface tension
effect was bounded for stable artistic controls.

Fig. 24 Rayleigh-Taylor instability appearing at the interface be-
tween a high-density medium atop a low-density medium due to
gravity [165].

Yan et al. [162] extended the MPM method to cope with
interacting solid-fluid simulations. Upon the detection of
a solid-fluid collision along the phase boundary, an anti-
penetration force is applied to both the fluid and solid particles
in opposite directions along the surface normal. The same
strategy is used to simulate non-mixing fluids where the anti-
penetration force is calculated between each distinct phase
and all the other phases collectively (Fig. 23).

Mesh-based methodologies offer the advantage of explicit
interface tracking using high-resolution geometric structures.
Da et al. [164] considered a special emphasis on topological-
change handling in 2D surface tracking for non-mixing fluid
simulations (Fig. 23). They constructed highly distorted in-
terfaces featuring thin sheets and tiny regions. Misztal et
al. [163] , on the other hand, aimed to prevent mismatches
between phase occupancy regions and the simulation quan-
tity storage grid. They achieved this by discretizing each
phase region using unstructured 3D tetrahedral grids, track-
ing the deformation of the tetrahedra. They managed topology
changes and mesh quality enhancements using a modified
3D deformable simplicial complex method. In contrast, Li et
al. [165] avoided complex remeshing operations by combining
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mesh-based tracking and surface reconstruction from distance
fields (Fig. 24). They reconstructed the surface meshes be-
tween each phase using an unsigned distance function and an
indicator function. The mesh was stored as later interpolation
reference in a semi-Lagrangian updating of the two functions
in the next time step. This approach was extended in [166] for
surface tracking of more than three phases. In this method,
special care is taken to handle mesh penetrations and ensure
consistency between meshes and the regional level-set func-
tions on the multi-fluid interfaces. An extended triangulation
template strategy is also proposed to handle triple junctions
which standard marching cube algorithms fail to reproduce.

c1

c2

Fig. 25 Schematic diagram of mixing fluids. The lower-left part
shows the fractions ci (volume fraction, mass fraction or concentra-
tion) of different phases in each particle during the diffusion process.
The upper-right part shows the 3D fluid grid; black arrows represent
grid forces due to diffusion.

6.2 Mixing fluids

Another category of multiple-fluid flows involves miscible or
dispersed fluid mixtures where interfaces can be challenging
to track continuously or may not exist at all. In contrast to
the non-mixing case (Sec. 6.1), different phases now always
co-exist at the same spatial position (Fig. 25). A key problem
is to calculate how the local volume fractions cVk of each phase
k change during the simulation, i.e., solving the multiphase
continuity equations. Other challenges include simulating
diffusive behavior, incompressibility enhancements, and sta-
bility improvements. We summarize several typical methods
which can be integrated into SPH [167, 168], PBF [153, 169],
and MPM [170] solvers.

Mixture model Ren et al. [167] used a multiphase mixture
model for complex multiphase mixing and unmixing effects.
Their SPH-based approach (called WCSPH) solves on each
particle the mixture continuity and momentum equations
given by

∂

∂t
ρm +∇ · (ρmum) = 0, (17)

∂

∂t
(ρmum)+∇·(ρmumum) = −∇pm+ρmg+∇·(Tm+TDm),

(18)
where ρm =

∑
k c

V
k ρk is the mixture density, um =

1
ρm

∑
k c

V
k ρkuk is the mixture velocity, pm is the mixture’s

pressure, and Tm,TDm are the mixture viscous stress and
diffusion tensors, respectively. Phase velocities are assumed
to be different from each other. For each phase k, a drift
velocity umk = uk−um is analytically computed at the start
of each time step. These phase-wise drift velocities are used
to calculate the phase volume fraction change DcVk /Dt as
well as the mixture diffusion tensor TDm. Following this, the
aggregate particle motion, individual phase velocities, and
the phase volume fraction changes on the particles during the
simulation are solved. Yan et al. [154] extended this mixture
model to cope with solid phases. Ren et al. [171] further
introduced a virtual phase concept for multiphase simulations
containing porous solids considering the absorbed and non-
absorbed parts of a single phase to be two virtual phases that
can be universally handled by the mixture model. The result
is a unified algorithm framework for multiphase flows inside
and outside porous solids. To alleviate the incompressibil-
ity issue of the WCSPH framework [167], Jiang et al. [168]
used volume-weighted mixture velocities um =

∑
k c

V
k uk,

thereby ensuring a divergence-free mixture velocity field
solvable by an iterative incompressible SPH solver for the
single-fluid case. To capture multiphase fluids with highly
dynamic relative motions, Jiang and Lan [172] presented a
dynamic mixture model which abandoned the local equilib-
rium condition. This method also allowed for fluid control
in the multiphase environment by solving the Navier-Stokes
equations for each phase flexibly. In contrast, Ren et al. [173]
used the deformation gradient to construct a set of linear
equations that matched the local volume change resulting
from the momentum-equation-solved velocities that resulted
from the continuity-equation-solved fraction changes, and
solved these equations for enhanced incompressibility.

Non-trivial-diffusion Traditionally, phase-mixing effects
in fluid simulation have been modeled using the diffusion
equation Dc

Dt = α∇2c, where α is the diffusion coefficient
and c is the concentration, which assumes uniform phase
velocities and movement in accordance with the aggregate
motion. This approach has been employed in various works
such as Im’s [174] diffusive dissolved air transfer model for
calculating bubble distribution in freezing ice blocks and
He et al.’s [175] two-phase diffusive model for simulating
diffusive appearances with varying sharpness in materials
like ink and bubbles.
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Fig. 26 Fluid extraction. From left to right, we see the change
of solution due to greater solubility of the green liquid within the
blue liquid than the red liquid. (a) At the beginning, the blue liquid
and yellow mixture are put in a separating funnel. (b) The funnel
is toppled. (c) Shaking vigorously mixes the fluids. (d) Turning the
funnel upright results in a clear interface between the red liquid and
a cyan mixture [169].

Other researchers have advanced this field with more so-
phisticated models. Yang et al. [169] integrated the Cahn-
Hilliard equation into multiphase simulation using an energy-
based model to capture complex multiphase effects such as
unmixing and extraction. They computed the change of the
mass fraction cmk of each phase k as

Dcmk
Dt

= ∇ · (M∇ϕk), (19)

where M is a degenerate mobility constant and ϕk is the
k-th phase’s chemical potential relying on the derivative of a
case-specified Helmholtz free energy function at the current
concentration composition. This model was able to capture
complex multiphase effects such as unmixing and extraction
(Fig. 26). Yang et al. [153] extended this model by using
a unified Helmholtz free energy form to handle both solid
and liquid phases, thereby expanding the capacity of the
PBF multiphase solver. Chen et al. [170] proposed a moving
least square reproducing kernel particle method for better
precision and stability of particle-based simulations. Using
an advanced interpolation scheme, they integrated the Cahn-
Hilliard equations into MPM solvers and achieved good mass
conservation, stability, and sub-grid details in multiphase
fluids.

Xue et al. [176] modeled anisotropic diffusive effects using
non-Fourier diffusion which was integrated into a phase field
formulation using an MPM solver. The resulting constitutive

model is given by
q = qC + qF ,

qC + τ q̇C = − (1−GT )α∇X,
qF = −GTα∇X,

(20)

where q is the associated diffusion flux, qC and qF represent
Cattaneo and Fourier diffusion, respectively, τ is the relaxation
time with respect to the flux, α is the diffusion coefficient,
and X is the quantity being diffused. GT is an adimensional
parameter that represents the weight between Cattaneo-type
diffusion and Fourier-type diffusion. Their method reproduced
complex folding effects of poroelastic materials during wetting
and also directional diffusive transportation effects. Su et
al. [177] adopted the anisotropic diffusive model in [176]
for temperature transport in an extended MPM phase change
solver allowing the simulation of richer phenomena. They also
introduced an integration scheme that provides second-order
accuracy with only first-order algorithmic overhead.

Additional works studied other mixing-related phenomena
in recent years. Stomakhin et al. [178] proposed an MPM
approach to solving heat-induced phase change of various
materials. A carefully designed projection solver allowed them
to simulate nearly incompressible phase-changing materials in
MPM. Hochstetter and Kolb [179] presented an SPH method
to simulate evaporation and condensation of liquids. Their
technique utilized particles to signify the liquid phase, while
the grid primarily served as a medium for simulating the air
phase and facilitating water vapor transport. This method
used Fourier’s law as a basis for heat transfer between grid
cells and particles, thereby advancing the understanding of
multiphase heat and mass transfer phenomena.

Liquid

Bubbles

Foam

Fig. 27 Schematic diagram of bubbles and foam. Gas accumulates
under water and forms bubbles. As bubbles rise to the water surface,
their volume increases due to a pressure decrease. When reaching
the surface, bubbles may form foam.

7 Gas-liquid interfaces
In fluid simulations, the influence of gas is often ignored.
However, numerous real-world fluid phenomena, including
the formation of water droplets and bubbles, cannot be ac-
curately represented without considering the role of gases.
The phenomena formed by gas-fluid interactions are complex
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and diverse. In this section, we discuss gas-liquid interface
phenomena grouped into three categories: free surface fluids
(Sec. 7.1), bubbles, foam and glugging (Sec. 7.2), and spray
and splashing (Sec. 7.3).

In free surface fluid simulation, the emphasis is typically
placed on calculating the fluid surface and accounting for
surface tension, rather than explicitly modeling the presence
of air or gases. We introduce some typical methods such as
contact angle, surface tracking, and continuous surface force.
We then discuss bubbles, foam and glugging together because
of their similar characteristics, which are the effects of a small
amount of gas being wrapped by the closed fluid. The bubbles
we are discussing here are those formed by air gathering in
water, while foam is formed by bubbles rising to the surface
of the fluid (Fig. 27). Glugging occurs e.g. when a liquid is
rapidly poured from a bottle with a narrow opening (Fig. 28)
and is a multiphase phenomenon where bubbles are generated
automatically. Finally, spray and splashing are formed by
free liquids in the gas. These are usually produced by violent
collisions of fluids and require more accurate simulation
methods.

Fig. 28 The glugging effect [180].

7.1 Free surface fluids

Physically correct or even at least plausible gas-liquid interface
modeling is challenging. This is largely due to the fact that,
while scalar fields such as pressure can be approximated
well using particles or grids at macroscopic scales, surface
tension (and similar) effects are the result of microscopic inter-
molecular forces (Fig. 29). This makes introducing surface
tension effects into standard Lagrangian and Eulerian solvers
(see Sec. 3.3) non-trivial.

Wang et al. [181] introduced the contact angle to calculate
surface tension. This angle exists at the junction of solid,
liquid, and gas, which indicates the hydrophilicity and hy-
drophobicity of solid materials (Fig. 30). They used signed
distance fields to represent such surfaces and constructed a

Liquid
Water molecule Molecular force

Fig. 29 Schematic diagram of surface tension. Liquids have forces
between the same-kind molecules (cohesion) and between different-
kind molecules (adhesion). The molecular force on the liquid surface
is unbalanced, resulting in surface tension effects.

virtual surface below the solid one to replace the real solid-
fluid interface. The distance field can be modified by the
virtual surface. Following this, the stable contact angle θs can
be obtained to estimate the surface tension from

γsa − (γla cos θs + γls) = 0, (21)

where γsa, γla, and γls are the interfacial tension coeffi-
cients for the solid-air, liquid-air, and liquid-solid surfaces,
respectively. However, this method uses a grid to represent
the internal volume of the fluid, which requires significant
memory and computing time.

Air

Liquid

Solid

γla

γsa
γls

θs

Fig. 30 Schematic diagram of stable contact angle θs. γsa, γla, and
γls are respectively the interfacial tension coefficients for solid-air,
liquid-air, and liquid-solid surfaces. When a drop of liquid rests on
a solid surface in equilibrium, the angle between the solid-liquid
interface and the gas-liquid interface is called the stable contact
angle.

Water drop animation is the main focus in Zhang et al. [182].
The crucial part of their Lagrangian system that allows effi-
cient simulations of water drop motions is the reduction of
volumetric fluid dynamics over the whole liquid volume to a
deformable surface model. While also using the contact angle
method like [181], their model focuses only on the surface
and is as such more computationally efficient.

Da et al. [183] proposed a surface-only model that avoids
having to deal with degrees of freedom inside liquids and
(often) far away from their surface. This is the first such model
for 3D liquids with the first advection-projection scheme for
surface-based liquids, albeit partly limited to bodies domi-
nated by surface tension and inertia, although still capable of
modeling effects such as crown splashing.

Akinci et al. [184] employed SPH as a method to model
surface tension and adhesion forces. Theirs is the first method
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Fig. 31 Simulation of high surface energy liquids including shape
change and two-way coupling with solids [188].

that correctly handles large surface tension (and adhesion)
without the need for ghost particles or artificial pressure
forces. The cohesion force is described as

Fcoh
i←j = −γmimjB (||xi − xj ||)

xi − xj

||xi − xj ||
, (22)

where γ represents the surface tension coefficient and B
denotes a spline function. The method is simple to integrate
with existing SPH solvers and can simulate effects such as
water crown formation and rolling water droplets.

By assigning each particle a value corresponding to an
estimate of its surface area, leading to an implicit definition
of the free surface of the fluid, Orthmann et al. [185] achieved
conservative transport within and between surfaces, including
correct handling of thin sheets and other singularities. This
allows for effective simulations of detergents, cleansing, and
coating.

Yang et al. [186] used a pairwise-force model called PF-
SPH which relies on larger support radii than traditional SPH.
The method improves the accuracy of the surface tension
calculation by using anisotropic filtering to scale neighbouring
particle interaction forces.

Energy-based methods have also been used to simulate
free surface fluids. He et al. [187] modified earlier surface
tension and air pressure formulations for SPH-based free
surface flows, building on the diffuse interface model. They
introduced a modified surface tension energy formulation Es

as
Es =

∫
V

κ

2
∥∇l∥2dV, (23)

where V represents the volume of the liquid, κ is a coefficient
associated with squared gradient energy, and l denotes the
condensation field. The surface tension energy Es is directly
related to the surface area of a fluid interface. Its gradient can
be computed to determine the surface tension force acting on
the interface. This improves the robustness of the model vs
particle sparsity and in turn leads to increased stability. The
model can simulate delicate surface tension effects such as
water/milk crowning.

Classical methods often struggle when it comes to relatively
high coefficient/parameter values such as those controlling
surface energy. To address this, Hyde et al. [188] developed an

implicit Lagrangian formulation. This formulation specifically
targets liquids with significant surface energy, such as liquid
metals (Fig. 31). By treating discrete forces as gradients of
the potential energy that are proportional to the surface area
of the liquid, this approach enables more accurate and stable
simulations. Chen et al. [189] proposed an MPM approach
which generalizes [188] by improving resampling via new
types of temporary ‘balance’ particles which achieve the
perfect conservation of grid linear and angular momenta.

7.2 Bubbles, foam, and glugging

Indeed, the influence of gas on fluid simulation extends beyond
just the free surface of the fluid. It encompasses the behavior
of the fluid interior and involves more intricate interaction
processes. Single-phase liquid simulations typically struggle
to capture phenomena like bubbles, foam, and glugging
effects, which necessitates the modeling of gas and liquid as
two-phase flows.

Patkar et al. [190] presented a hybrid Lagrangian-Eulerian
scheme for converting between small (i.e., sub-grid and
under-resolved) Lagrangian bubbles and larger well-resolved
bubbles modeled with an Eulerian approach based on level
sets. Their framework includes a bubble seeding mechanism to
realistically simulate fluid structure interaction with complex
(moving) objects. Cho and Ko [191] combined the volume
of fluid (VOF) with the sub-grid refinement of the level set
method to simulate moving interfaces in two-phase flows.

Goldade et al. [192] developed a model for immersed
bubble simulation which avoids advection and projection
inside bubbles. It is based on constraint-based incompressible
bubbles (with zero density) and affine fluid regions (to account
for non-zero density coefficients). The simulation region is
divided into a fluid region Ωf , solid region Ωs, and air region
Ωa. Any enclosed and continuous region filled with air is
treated as a bubble. Linear velocity constraints are imposed
on each bubble via∫∫

Ωf∩∂Ωai

uf · nf da+

∫∫
Ωs∩∂Ωai

us · ns da = 0, (24)

where Ωai is the continuous region of bubble i. nf and ns

are fluid’s normal and solid boundary’s normal, respectively.
Additional special bubble simulations exist. Paddilla et

al. [193] modeled bubble rings via vortex filaments of variable
thickness assuming that advective inertial forces are small
with respect to viscous forces. Filaments are expressed as a
configuration manifold on which the equations of motion are
geodesic. Langlois et al. [194] introduced a set of techniques
aimed at generating sound representations for intricate two-
phase liquid animations. They extended the open-source
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Gerris solver [195] (a finite-volume-based multigrid solver)
to achieve audio-visual fluid (and bubble) simulations.

Although some of the above methods can handle foams to
some extent, specialized methods exist for this. Busaryev et
al. [196] animated bubble interactions in liquid foams by
treating (small) bubble particles as sites of Voronoi cells in a
weighted diagram. Their framework handles bubble-bubble,
bubble-liquid and also bubble-solid interactions, giving rise
to foam simulations with bursting and coalescing. Kim et
al. [197] modeled foam waves using the FLIP solver. Foam
particles projected to 2D give rise to depth and acceleration
maps, making the method efficient. The method provides
the option to art-direct the foam effects using sketches and
level-of-detail controls.

Fig. 32 River. A river flowing around sharp creases of a winding
canyon creates a combination of calm and dynamic regions, including
waterfalls and backdrafts. [198] ©Weta FX.

Recently, Wretborn et al. [198] presented a realistic model
for white-water simulation (Fig. 32). Their method enhances
simulations with (tiny) bubble and foam detail by a stable
coupling scheme between bubbles and water, a novel bubble
emission scheme, and manifold advection for accurate foam
tracking.

For the simulation of glugging, Boyd and Bridson [199]
proposed the MultiFLIP method that extended the FLIP
method to two-phase flows. They treated not only liquid, but
also air, as incompressible phases, both modeled via particles.
This (re)produces, among others, the glugging effect.

Ando et al. [200] introduced a stream function-based solver
as a FLIP variant. In this approach, the stream function ψ
is used to determine the divergence-free velocity field u,
given by u = ∇ × ψ. Interestingly, their work shows that
solvers based on stream functions are just as viable as regular
pressure solves. The method is able to simulate glugging
without modeling the second phase (air) explicitly.

7.3 Spray and splashing

Spray and splashing are very common phenomena in fluid
scenes (Fig. 33). For scenes with intense collisions like

turbulence, the final visual effect largely depends on the
fidelity of the spray and splash simulation.

Liquid

Spray
Splashing

Fig. 33 Schematic diagram of spray and splashing. Spray and
splashing are different in simulation scale. Compared with splashing,
spray is composed of finer droplets.

Nielsen and Østerby [201] modeled spray as a two-way cou-
pled two-continua with different volume fractions to achieve
realistic spray motion. However, a grid-based density field
cannot capture the motion of a single droplet. In contrast,
Jones and Southern [202] focused on efficient physics-based
droplet interaction. They introduced coalescence, separating,
and fragmenting collision outcomes into a novel particle in-
teraction model to simulate droplets. This provides a ballistic
particle system for liquid droplets and spray.

Yang et al. [203] focused on spray simulation such as arising
from high-speed/violent liquid streams. Similar to [190], they
also used a hybrid Lagrangian-Eulerian model (with FLIP
components in their case) to model mixture phenomena with
high fidelity. Their efficient CUDA implementation allows
modeling droplet and spray effects such as arising in waterfall
and fountain simulations.

Guo et al. [204] addressed the stability challenges encoun-
tered in the two-phase lattice Boltzmann model (TP-LBM)
by introducing a novel density-aware sub-grid-scale model.
Their approach can uniformly simulate different gas-liquid
phenomena, allowing for realistic and visually compelling
representations of gas-liquid flow dynamics.

Li et al. [180] proposed a multiphase flow method to sim-
ulate complex effects such as bubbling, glugging, wetting,
and splashing. A single model captures all these effects by
building on the kinetic-based Lattice Boltzmann Phase-Field
(LBM-PF) method. The interface motion is governed by the
conservative phase-field equation
∂cΦ
∂t

+∇ · (cΦu) = ∇ ·
[
M

(
∇cΦ − 4

ξ
cΦ(1− cΦ)ninter

)]
,

(25)
where the phase field cΦ represents the percentage of the
flow phase; the mobility M controls the degree of interface
splitting, ξ denotes the interface width, andninter corresponds
to the interface normal. This method is highly general and
versatile and can produce results comparable to industry-
standard CFD simulations.
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In a similar vein, Li et al. [205] introduced a kinetic ap-
proach to multiphase fluids. Their scheme incorporates an
accurate collision model and is able to robustly capture intri-
cate and visually-appealing behaviors such as the injection of
gas into the liquid (Fig. 34).

Fig. 34 The injection of gas into a glass of water [205].

8 Fine details enhancement
Capturing high-frequency details of fluid surfaces, such as
vortices, waves, and turbulence, is key to enhancing the
realism or artistry of fluid simulations. The use of higher-
order advection numerical methods or finer discretization
can alleviate the numerical dissipation problems inherent
in fluid simulation. Yet, this creates very high memory and
computation time needs. To cope with this, several methods
were designed to specifically add fine details to a coarse
fluid simulation in the last decade. We group these into
three classes: reduced-dimensional simulation on the fluid
surface only (Sec. 8.1); dynamic methods to combat numerical
dissipation (Sec. 8.2); and data-driven methods (Sec. 8.3).

8.1 Reduced-dimensional simulation on the fluid sur-
face only

These techniques decouple the surface simulation from the
volume simulation, allowing a secondary model with high-
resolution surface features to be added to a coarse (thus fast to
compute) volume fluid model. We further split methods in this
class into embedding techniques, 2D water wave simulation,
and surface tracking and reconstruction, as follows.

Embedding techniques The Closest Point Method (CPM)
[206] is a numerical method for solving PDEs on surfaces.
Unlike 2D surface parametrization, CPM typically uses a 3D
Cartesian grid to discretize narrow spatial bands around the
surface, which allows it to scale according to the complexity
of the surface rather than the volume.

Auer et al. [207] used CPM to simulate fluid effects on static
surfaces in real-time. Auer and Westermann [208] followed up

with a semi-Lagrangian CPM that alleviated some technical
limitations of previous applications of CPM to deformed
surfaces. Their method is unconditionally stable for surface
deformation. Kim et al. [209] used CPM to explicitly perform
high-resolution wave simulations on the liquid surface. They
used the iWave algorithm [210] to produce more realistic
water waves than the traditional wave equation, which can be
expressed as

∂2H

∂t2
= −g

√
−∇2H, (26)

where H is the fluid height, g is the gravity constant, and√
−∇2 is a fractional Laplacian operator.
Mercier et al. [211] added a sub-grid wave model to

particle-based liquid simulations to enhance such simulations
with additional turbulence. Goldade et al. [212] worked to
eliminate sub-grid errors in underlying surfaces and reduced
artifacts in narrow bands around surfaces. Morgenroth et
al. [213] used CPM to efficiently compute high-resolution
2D simulations on rough surfaces. Their method is similar
to [208] but adds mass and momentum conservation and can
produce interesting effects such as oil films on water surfaces
and thermal convection on a hemisphere.

2D water wave simulation To reduce computational com-
plexity while keeping surface detail, some researchers have
investigated the simulation of water waves on fluid surfaces.
Water wave simulations are independent of degrees of free-
dom, so high-frequency visual detail can be created without
increasing the simulation resolution.

In response to the inability of the shallow water equations
(SWE) to capture motion details such as wakes, Pan et al. [214]
used a 2D discrete vortex method to capture the wake behind
a moving rigid body. Their method requires only a small
number of wake particles and is fast enough for real-time
applications. Yet, this method fails to handle the complex
wake patterns caused by vortex stretching and tiling in 3D
flow. Azencot et al. [215] used a scalar vorticity function
on 2D domains to describe the vortex behaviour of fluid
surfaces, greatly simplifying the analysis and simulation of
fluids. Later, Azencot et al. [216] simulated the complex
behaviour between multiple waves, including annihilation,
recreation, splitting, and merging, by solving the EPDiff
[217] on arbitrary triangle meshes using an explicit structure-
preserving numerical scheme.

A key challenge in wave simulation is handling the coupling
between waves and obstacles. Canabal et al. [218] generated
rich water waves using a dispersion kernel as the spatially
variant filter and further simulated interactions between waves
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and static or moving obstacles by modulating this dispersion
kernel. The dispersion relation under the Airy wave theory
[219] defines the propagation speed of each wave uc as

uc =

√(
g

w
+
γ

ρ
w

)
tanh(wH) (27)

where w is the wave number, g is the gravity constant, ρ and
γ are the density and surface tension of the fluid, respectively,
andH is the fluid height. Jeschke and Wojtan [220] simulated
the movement and interaction of a large amount of waves
by a wavefront tracking algorithm with multivalued func-
tion interpolation. Their method can model the dispersion,
refraction, reflection and diffraction of waves well, but only
handles scenes with static obstacles. Later, they introduced
the concept of wave packets [221] which can handle the in-
teraction of water waves and moving objects. They used an
improved Lagrangian particle method to simulate the diffu-
sion of water waves to add more visual detail. However, this
method cannot be extended to moving 3D fluid simulations
of surfaces. The same problem was addressed by Skrivan et
al. [222] who decoupled the wave resolution from the simu-
lated resolution using Lagrangian wave packets. This method
significantly increases the visible detail on the fluid surface
as a post-processing step.

Creating large open water animations and adding wave
detail is a common requirement for a variety of interactive or
offline applications. Implementing this requires carefully bal-
ancing visual quality vs computational resources. Nielsen et
al. [223] proposed a wave synthesis technique based on the
Fourier transform to enhance the details of wave animation.
However, wave-obstacle interactions are difficult to incor-
porate into the spectral solver. Keeler and Bridson [224]
proposed an efficient surface-only simulation of deep ocean
waves and used a new indirect boundary integral equation
to deal with wave-solid boundary interactions. The Method
of Fundamental Solutions (MFS) was also used to generate
realistic waves behind moving obstacles. Schreck et al. [225]
proposed a novel discretization for MFS using wavelets and
achieved naturally-looking wave interactions with complex
boundaries (Fig. 35). Their method obtained impressive re-
sults on a large-scale ocean scene. Jeschke et al. have succes-
sively developed two interactive systems for the simulation of
large ocean scenes that can handle detailed wave details [226]
and coupled interactions with complex terrain [227], respec-
tively. Recently, Schreck and Wojtan [228] proposed a coupled
method of 3D liquid simulation and 2D wave propagation to
simulate infinitely large bodies of water and fine surface wave
detail. An empirically driven error compensation method is

Fig. 35 Water waves can accurately interact with complex bound-
aries [225].

also used to remove coupling errors from the simulation to
achieve a seamless transition between 2D and 3D.

Surface tracking and reconstruction Tracking and recon-
structing fluid surfaces is important for generating realistic
animation effects. This is difficult to achieve due to the com-
plex shapes and frequent topological changes of fluids.

For Eulerian fluid simulations, robust handling of surface
triangle mesh splitting and merging can remove visual arti-
facts to preserve important surface features. Bojsen-Hansen et
al. [229] proposed a method for tracking the topological
evolution of surfaces that can solve the wave equations on
lower resolution fluid surfaces to synthesize high-frequency
details. Later, Bojsen-Hansen and Wojtan [230] presented
a novel physics-based surface fairing method that solved
the physical and topological artifacts arising from coupling
high-resolution surface trackers with low-resolution fluid
simulations by introducing an error metric and surface cor-
rection force. Edwards and Bridson [231] presented a new
approach to adaptive fluid simulation. They track explicit
triangulated mesh surfaces and use the p-adaptive Discontin-
uous Galerkin (DG) method [232] within detailed cut cells
near the surface. The treatment of dynamics is guaranteed to
be physically consistent while reducing computational costs
by using coarse-grid fluid simulations. Chentanez et al. [233]
devised a grid-free surface tracking method that deals with
topological changes by removing overlapping triangles and
performing effective triangulation of the generated holes. This
method can be used in both mesh-based and particle-based
simulations.

Inaccurate detection of free surface particles in particle-
based fluid simulations can lead to unrealistic artifacts. Also,
irregularly distributed particles can make the reconstructed
surface bumpy. To address the fact that particles do not
keep connectivity information, Yu et al. [234] proposed to
periodically project surface meshes to match implicit surfaces
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defined by fluid particles. This method allows the simulation
of high resolution surface waves without the limitation of
particle resolution. Later, Yu and Turk [235] proposed a
method for reconstructing surfaces in particle-based fluid
simulations. They utilized a stretched anisotropic smooth
kernel to represent each simulated particle, resulting in a
greatly improved surface quality (Fig. 36). Sandim et al. [236]
proposed a fast free surface detection method that only requires
the positions of particles to identify surface particles without
using kernel functions or normal vectors. This method is
applicable to cases with non-uniform particle distributions
and complex free surface deformations. Dagenais et al. [237]
used an explicit mesh projection method based on signed
distance fields to preserve surface detail and introduced a
new topology matching operation to maintain consistency
between explicit surface and particle behaviour.

Fig. 36 Schematic diagram of isotropic and anisotropic particles.
In contrast to isotropic particle fluids (left), anisotropic particle
fluids (right) have a smoother surface.

8.2 Dynamical methods for reducing numerical dissi-
pation

The advective-projection method leads to numerical dissipa-
tion which results in kinetic energy decay and suppression
of motion such as vortices and turbulence. Bulk enhance-
ment methods aim to improve the whole fluid volume rather
than only its free surface. We further group such methods
that aim to improve system energy conservation and detail
preservation by reducing numerical dissipation in vorticity
confinement, vortex-based methods, and various variants of
dynamics solvers, as described next.

Vorticity confinement methods. Such methods are based
on the principle of vorticity conservation, which adds a vor-
ticity control term to restrain the diffusion of vortices, thus
simulating fluid dynamics problems such as turbulence and
vortex streets without dissipation. Fedkiw et al. [238] first ap-
plied the vorticity confinement method to smoke simulations
by adding an additional force field to maintain the airflow
vorticity. Second-order vorticity confinement (VC2) further
improved this method by ensuring momentum conservation.
The confinement term of VC2, Fconf , is given by

Fconf = −∆x∇× (αω − ζm), (28)
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Fig. 37 Schematic diagram of the causes of vorticity dissipation
and methods of refinement.

where ∆x is the grid size, α and ζ are the positive and
negative diffusion coefficients, respectively, ω is the angular
velocity, and m is the harmonic mean of the local vorticity
stencil. Lentine et al. [239] improved the vorticity confinement
model by allocating global momentum to ensure momentum
conservation. Jang et al. [240] applied the multi-level vorticity
confinement method to simulate water turbulence in order to
capture large/small-scale vortices and complex flow details.
He and Lau [241] proposed adaptive adjustment of the positive
diffusion term to balance constraints, which broadened the
stability conditions of the VC2 method and made it capable
of generating highly turbulent flows. However, the vorticity
constraint method can only enhance existing vortices or
turbulence and may not be effective for other types of flows,
such as laminar flow. Moreover, computational costs can
increase significantly due to additional constraints, especially
for large-scale complex fluid scenarios.

Vortex-based methods The potential vorticity field can
be effectively modeled using vortex-based methods. These
methods simulate the vorticity of the velocity field rather than
the velocity field itself, so this automatically guarantees a
divergence-free velocity field and removes numerical dissi-
pation. Most such methods are Lagrangian and model the
vorticity form ωv of the Navier-Stokes equation as

∂ωv

∂t
+ (u · ∇)ωv = (ωv · ∇)u+ µ∇2ωv, (29)

∇ · ωv = 0. (30)

This formulation represents the vorticity distribution as a
superposition of singularities.

Zhang et al. [242] proposed a new scheme named IVOCK,
which aims to solve the errors and energy loss caused by the
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self-advection step through compensating the vorticity error.
However, this method is only applicable to fluid simulation on
uniform grids. Liu et al. [243] extended this idea to particle-
based turbulent detail simulation (Fig. 37). Recently, Xiong et
al. [244] proposed a vortex segment method to simulate flows
with strong anisotropic vortical features. Compared with
existing Lagrangian vortex particle methods, this method can
more vividly model complex phenomena such as the splitting
and reconnection of two vortex tubes or vortex shedding near
a solid boundary.

The main challenge of vortex methods is the handling of
fluid-solid coupling and creating vortices at this coupling
boundary. For this, Golas et al. [245] proposed a combi-
nation of Eulerian simulation and vortex singularity bases.
By using Lagrangian vortex elements inside the fluid and
enforcing boundary conditions in the Eulerian mesh, robust
interaction of free surfaces and non-rigid obstacles can be
achieved. Zhang et al. [246] used a FLIP approach to solve
the Navier-Stokes equation using viscous particle strength
exchange, handling the momentum transformation at the
solid boundary effectively. Liao et al. [247] proposed a new
wall-bounded turbulent smoke simulation method, which
introduced particle-particle interactions to traditional vortex
filament mesh calculations to accurately capture the vortices
and thin turbulence generated by smoke-obstacle interactions.

Various variants of dynamics solvers Additional methods
improve on current advection-projection solvers or extend
classical dynamical methods to achieve detail enhancement. In
the advection-projection step, detail and energy preservation
are greatly improved by the introduction of detail capture
and shape correction techniques [248], the use of energy-
preserving reflection operators [249], and feature mapping
with convectors [250].

Yang et al. [251] first introduced the Clebsch wave function
as a system scaling variable to evolve Eulerian flow fields,
which significantly improves the ability to generate and sustain
vorticity in simulations of various gases and liquids. Later, in
order to solve the numerical instability problem of Clebsch’s
method near dynamic interfaces, Xiong et al. [252] proposed
a new wave function correction scheme and extrapolation
algorithm, which achieved detailed simulation of various
vortex structures on free surfaces. Recently, Feng et al. [253]
proposed a numerical method for solving the Navier-Stokes
equations based on the pulse gauge transformation which can
generate rich vortical details by treating the fluid pulse as an
auxiliary variable.

Fig. 38 Airflow over the delta wing of an aircraft showing a realistic
and complex vortex distribution [256].

Liu et al. [254] and Li et al. [255] created two turbulence
simulation methods using an adaptive multi-relaxation scheme
and statistical mechanics, respectively. Later, Lyu et al. [256]
further improved the boundary treatment of dynamic solids,
enabling the simulation of fluid-solid coupling between thin
structures and turbulent fluids (Fig. 38).

The micropolar fluid model is an extension of the classical
Navier-Stokes equation which takes into account not only the
linear but also the angular velocities of the fluid particles,
thus enhancing the eddy and turbulence details of the fluid.
Bender et al. [257] first used the micropolar fluid model to
simulate the turbulence phenomenon of non-viscous fluids.
Subsequently, they post-processed the foam phenomenon on
this basis to significantly improve the realism of the visual
effect.

8.3 Data-driven methods for detail enhancement

Texture synthesis Geared toward the production of artis-
tic effects based on fluid elements, texture synthesis is the
technique of choice for adding detail to surfaces. As a post-
processing method, texture synthesis achieves detailed surface
features through patch or style transfer based on deep learning.

Patch-based texture synthesis maps image textures or simu-
lated features to the target flow field, improving the appearance
of the source simulation by matching the target dataset fea-
tures. Jamriška et al. [258] used per-pixel best-fit search to
achieve rich visual effects through 2D input image appearance
transfer. However, this method is limited to image space syn-
thesis and is difficult to extend to 3D fluid surfaces. Gagnon et
al. [259] proposed a temporally coherent patch-based texture
synthesis method to handle scenes with significant deforma-
tion and topological changes. This approach aims to maintain
a Poisson disk distribution of patches on a free surface to find
the optimal parameter values and locations of time-varying
patches. For the ghosting problem of overlapping patches
in [259], Gagnon et al. [260] followed up with a solution
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scheme based on patch erosion. They used feature-aware
erosion to remove patch distortion textures to ensure realism
of the mapping.

In contrast to surface texture synthesis, deep neural net-
works perform various stylization tasks on volumetric data by
extracting 2D image features. Sato et al. [261] proposed a style
transfer method that migrates high resolution turbulent details
to low resolution flow fields, which speeds up the fine surface
detail simulation by nearly 30 times. In addition, they used
an optimized texture synthesis method to solve the problem
of discontinuity at the patch boundary. Kim et al. [262] first
proposed a transport-based neural style transfer algorithm
that enables automatic conversion of the semantic struc-
ture of 2D images into 3D smoke simulations. The method
achieves complex artistic effects by optimizing the transport
of smoke to the desired stylized velocity field at each time
step. However, this method cannot handle the transfer of color
information. Therefore, they further redefined the method in a
Lagrangian setting to ensure better temporal consistency and
support for color stylization [263]. Unlike stylization methods
which focus on fluid simulation shapes, Guo et al. [264] pro-
posed a Stylizing Kernel Prediction Network (SKPN) aimed
at stylizing physical color appearances. The method can easily
generate the user’s desired color appearance without complex
parameter tuning.

Fig. 39 Using TempoGAN [265] to generate high resolution smoke
volumes from low resolution inputs.

Upsampling methods generate super-resolution Gener-
ating super-resolution simulations from low-resolution inputs
is challenging. With the popularity of machine learning
techniques, recovering fine details of fluids through super-
resolution reconstruction techniques or upsampling methods
has received increasing attention.

Ten years ago, Zhang and Ma [266] proposed a spatio-
temporal extrapolation technique that enables high-resolution
flow features on coarse grids. Chu and Thuerey [267] en-
hanced the turbulence detail of the smoke simulation on
the coarse grid by using local patch descriptors. Um et
al. [268] proposed a deep neural network to capture small-
scale splashed droplet details from low-resolution liquid

simulations. Xie et al. [265] used a conditional generative
adversarial network with a temporal discriminator to directly
generate advected quantities with highly detailed and tempo-
rally coherent features for smoke simulation (Fig. 39). CNNs
have been used to create matching models to correct the shape
of low-resolution smoke simulations [269] and estimate phys-
ical parameters to guide the reconstruction of high-resolution
velocity fields [270]. Bai et al. [271] used a dictionary-based
neural network for fluid upsampling. Yet, the choice of the
training set was somewhat limited and the spatial and temporal
consistency of the results could not be guaranteed. They next
significantly improved the prediction quality of the network
by adding filtering to the training process [272]. With the
development of Deep Neural Networks (DNNs) in recent
years, Roy et al. [273] proposed a DNN-based method for
improving the resolution of coarse particle liquid simulations.

9 Fluid control
The wealth of methods for fluid simulation surveyed so far
leads next to a key question: How to control such simulations?
Even though a method can technically produce highly accurate
results, its ultimate target is to enable its users to steer the
method toward the desired results. We next group and discuss
fluid control methods in three classes using different control
perspectives: scenario editing (Sec. 9.1), artificial effects
(Sec. 9.2), and media-directed formation (Sec. 9.3).

Fluid

Splash

Splash

Splash

Fig. 40 Schematic diagram of scenario editing based on changing
an existing simulation to achieve desired effects.

9.1 Scenario Editing

Scenario editing steers the fluid by generating new simulation
scenarios based on existing simulation results without los-
ing the characteristics of the original simulations (Fig. 40).
On the positive side, such control is technically the closest
to how a simulation works, so it can steer the fluid most
directly. On the negative side, this control requires the end
users’ advanced skills and an understanding of the underlying
simulation and overall fluid flow technicalities. We further
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divide scenario editing into three sub-types based on the
implementation approach: target guided editing, adjustable
editing, and camera-based editing.

Target guided editing. Such methods modify an exist-
ing fluid simulation to match a given target, e.g., a higher
resolution. Gregson et al. [274] connected low-resolution
smoke capture with its velocity field. They treated the pres-
sure projection as a proximal operator and tracked the fluid
by estimating its velocity. Through advection, their method
obtained a high-resolution re-simulated smoke. Forootaninia
and Narain [275] successfully guided high-resolution smoke
flow by replacing its low-frequency component with a given
guiding field. Generally, the guiding task is seen as an opti-
mization problem that minimizes errors. This optimization
problem was solved efficiently by using a fast primal-dual
method [276]. To achieve a more desirable artistic effect, it
is essential to guide smoke animation in such a way that it
aligns with one or multiple target density keyframes provided
by the artist. In order to address this control problem, Pan and
Manocha [277] formulated it as a space-time optimization.
They employed an Alternating Direction Method of Multipli-
ers (ADMM) optimizer [278] to derive a dense sequence that
forces the smoke to attain the desired target shape. Tang et
al. [279] proposed an advanced method that effectively ad-
dresses both the issues of unconstrained optimization and
high-dimensionality of the parameter space simultaneously.

Adjustable editing. These methods aim to control, edit, or
resize fluid simulations during implementation. Raveendran et
al. [280] focused on control with an emphasis on the liquid
surface and proposed a method for creating high-quality fluid
animations that provides the animator with multiple control
levels. Further on, Raveendran et al. [92] proposed a smooth
blending method to interpolate between two or more existing
pre-computed liquid simulations. With their method, one can
generate hundreds of different plausible results at interactive
rates with potential applications in games and virtual reality.
Sato et al. [281] proposed a smoke blending method to help
animators synthesize the desired fluid animation. Velocities
at the boundaries are interpolated by minimizing an energy
function. This approach significantly reduces computational
costs by reusing existing flow data instead of creating realistic
fluid animations by numerical simulation. Fluid carving
is another way for editing fluid simulations. By utilizing
seam carving, efficient and effective resizing of 4D fluid
simulation data can be achieved [282]. Flynn et al. [283]
proposed a lattice-guided seam computation method which

broke through the limitation of rectangular boundary and
reduced calculation time.

Camera-based editing. In the context of large-scale scene
simulation, due to computational cost considerations, it is
often necessary to perform coarse-grained simulations of
the entire world, and subsequently integrate finer-grained
details into the scene. To integrate two simulated fluid scenes
seamlessly, Bojsen-Hansen and Wojtan [284] presented a
fluid modification approach with ‘non-reflecting’ boundary
handling. They extended the simple Perfectly-Matched Layers
(PMLs) method to handle coupling inflow/outflow boundaries
with varying spatial and temporal conditions. The boundary
can be modified easily during the simulation and it handles the
multi-resolution combination. Stomanuykhin and Selle [285]
introduced the Flow-Animated Boundary (FAB) method,
in which the boundary can have a custom shape and vary
over time, with materials outside the boundary dynamically
removed using volume flux.

User
defined
sketch

Fig. 41 Schematic diagram of artificial effects: Artist-directed
control to achieve non-physical effects.

9.2 Artificial effects

One often needs to artificially edit and control fluids in order
to achieve specific artistic effects. Different from scenario
editing, artificial effects add new characteristics to a simula-
tion by artificially guiding the formation of fluid shapes or
movements during the process (Fig. 41). Due to the complex
motion of fluids, keyframe animation, which involves con-
trolling the flow of fluids to match keyframes, is a commonly
used method for fluid control to reduce unrealistic effects
in simulations. However, manually designed frames often
lack volume preservation and exhibit excessive smoothness,
resulting in the loss of simulation details.

Pan et al. [286] proposed a local control method instead of
globally manipulating the entire fluid, allowing users to edit
and control fluid shapes in specific regions using a brush-like
tool. However, controlling the simulation process between
keyframes is challenging. To address this issue, Lu et al. [287]
drew inspiration from skeletal animation techniques. They in-
troduced a method that controls fluid motion by manipulating
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a point cloud with rigid body motion and incompressible de-
formations, and subsequently performing skinning operations
on the point cloud. Similar to [287], Yan et al. [288] applied
conditional generative adversarial networks to generate fluid
splashes based on simple user-defined sketch input (Fig. 42).
Control particles with attractive forces provide an efficient
way to reproduce complex motion by using pre-computed
templates [289]. In this work, a set of shape-constraint par-
ticles are seeded and a repulsion force field is computed to
control the shape of the final result.

(a) Sketch drawn in a virtual reality
environment

(b) Front view of the model

Fig. 42 Example of artificial effects: Fluid splashed on a butterfly
shape generated by user sketching [288].

9.3 Media-directed formation

Pure physics simulations often suffer from significant com-
putational time requirements, making them impractical for
real-world production applications. Media-directed forma-
tion aims to set up simulation scenarios based on real-life
videos or images of the fluid, reproducing real-world scenes
(Fig. 43). These methods estimate fluid properties such as
volume, density, motion, and style from visual data.

Fig. 43 Schematic diagram of media-directed formation: Images
or videos are used to reproduce real-world scenes.

Okabe et al. [290] focused on reconstructing a detailed
3D model of a fluid volume, such as smoke or liquids, from
sparse multi-view images. It involves sparse reconstruction
and appearance transfer to capture the underlying structure and
enhance the visual fidelity of the reconstructed fluid volume.
Unlike [290], Eckert et al. [291] dealt with estimating both the
density and motion of a fluid from a single view or sequence
of images without the need for multiple views. Nie et al. [292]
proposed a fluid reconstruction and editing model to generate

particle-based simulations based on monocular videos. Using
the SPH method with external forces, they could obtain a
simulated fluid volume under the guidance of a pre-processed
water surface.

10 Special fluids
10.1 Highly viscous fluids

Viscosity is an attribute that measures the ability of a fluid
to resist deformation at a given rate. With viscosity, the
moving fluids will generate internal stress responding to
the deformation, which causes the energy dissipation of the
fluids and affects their behavior. For low viscosity fluids like
water, inertial forces are dominant. For high viscosity fluids
like molasses and chocolate sauce, viscosity leads to special
phenomena like bulking and coiling. Moreover, for different
kinds of fluids, the viscous characters can vary drastically to
their shear rate (see Fig. 44). The simulation of high viscosity
fluids has attracted recent interest in computer graphics.
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Fig. 44 Diagrams illustrating the relationship between shear rate
and shear stress, as well as shear rate and viscosity, for various
highly viscous fluids, with design inspiration taken from [293]. (a)
Plots of shear stress versus shear rate for different highly viscous
fluids. (b) Plots of viscosity versus shear rate for different highly
viscous fluids.
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Newtonian fluids Following Newton’s viscosity law, the
viscosity of a Newtonian fluid (incompressible and isotropic)
can be expressed by a material parameter µ called dynamic
viscosity. Using this, the inner viscous stress tensor Tvis is
computed as

Tvis = 2µE, (31)

where E is a symmetric strain rate tensor that describes the
shear strain rate. This equation indicates that the viscous
stresses of Newtonian fluids are at every point linearly corre-
lated to the local strain rate. Using the spatial derivatives of
the velocity field, the strain rate tensor E can be defined as

E =
1

2
(∇u+ (∇u)T ). (32)

Substituting Eqn. (31) and Eqn. (32) into the viscosity
force field formulation fvis = ∇ ·Tvis and adding the incom-
pressible condition ∇ · u = 0, the viscosity force field fvis
can be computed as

fvis = µ∇2u. (33)

This gives the viscosity term in the momentum equation,
corresponding to the viscosity term in the form of kinematic
viscosity in Eqn. (6).

Discretizing the viscosity term is a challenging problem
for SPH based methods. Takahashi et al. [294] proposed an
implicit Euler integration to solve the viscosity term sepa-
rately, using two SPH first derivatives to discretize the strain
tensor and the divergence of the stress tensor respectively.
This method supports a larger range of viscosity and time
step values, but a second-ring neighbor computation is re-
quired which impacts efficiency. Peer and Teschner [295]
decompose the velocity gradient into three tensors – spin
rate, expansion rate, and shear rate. A user-defined viscosity
parameter modifies the shear component which describes the
dissipation because of viscosity. This leads to a target velocity
gradient that is used to reconstruct the final velocity field with
a first-order Taylor approximation. Since the velocity gradient
field is decomposed, the linear system of the velocity field can
be solved separately. However, shear viscosity does physically
affect the rotation component in the velocity gradient because
of the tangential component in rotation. Peer et al. [296] ex-
tended this method using a vorticity diffusion scheme. The
spin rate tensor in the target velocity gradient is modified by
solving a vorticity diffusion process, which uses the viscosity
parameter in [295], so that vorticity damping is introduced
to achieve more realistic effects. Instead of using the strain
rate, Weiler et al. [297] introduced an implicit viscosity solver
based on the Laplacian of the velocity field in Eqn. (33).
With a symmetric form of the approximation discretization of

the viscosity term [298], an implicit linear system for a new
velocity field can be obtained.

(a) coiling (b) bulking

Fig. 45 Coiling and bulking effects of highly viscous fluids [299].

Fig. 46 Change the viscosity to achieve the effect of different
viscous fluids such as cream, jam and chocolate sauce [300].

The above-mentioned solvers separate the solving of pres-
sure and viscosity, which reduces accuracy and cannot gen-
erate free surface details. Larinov et al. [299] introduced
a unified pressure-viscosity solver based on implicit varia-
tional unsteady Stokes flow problems for grid-based methods,
where the inertial force is considered to improve accuracy
and achieve a wider viscosity range (Fig. 45). Combining
the semi-implicit equation of correlation pressure (SIMPLE)
method with SPH, Liu et al. [300] used the result of the pres-
sure Poisson equation to improve the pressure in the viscosity
solver in an iterative process, which converges to a globally
optimal solution (Fig. 46).

Even with a stable solver, mimicking the viscosity coef-
ficient of the target fluid is essential in order to realistically
simulate highly viscous fluids. Takahashi and Lin [99] pro-
posed a framework to find the required viscosity parameter
from real videos of highly viscous fluids by minimizing an
objective function that evaluates the difference between the
silhouettes extracted from video frames and those obtained
from the simulation.

Non-Newtonian fluids Such fluids do not follow Newton’s
viscosity law but rather show a non-linear relation between
shear stress and the strain rate. For example, the viscosity of a
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shear-thickening or dilatant fluid (e.g. starch paste) increases
when the shear rate increases; the opposite happens for a shear-
thinning or pseudoplastic fluid (e.g. ketchup). Some non-
Newtonian fluids have properties of solids, such as Bingham
plastic fluids like toothpaste. Hence, it is impossible to use
a constant viscosity for non-Newtonian fluids. Appropriate
constitutive models are required to simulate such fluids.

The Carreau-Yasuda model is a well-known method to
simulate non-Newtonian fluids by defining a shear-rate-related
viscosity µ as

µ = µ∞ + (µ0 − µ∞)[1 + (Rϵ̇)a](n−1)/a, (34)

where µ0 is the zero-shear viscosity, µ∞ is the infinite viscos-
ity, ϵ̇ is the shear rate, R is the relaxation time that scales the
shear rate, n is a power law index, and amodels the transition
smoothness between the Newtonian plateau and the power
law regime. When n = 1, this model becomes a Newtonian
fluid with dynamic viscosity µ0. For shear-thinning fluids
(n < 1), as the strain rate increases, viscosity will vary from
µ0 to µ∞. For shear-thickening fluids (n > 1), the viscosity
increases as the shear rate increases.

Bingham plastic fluids are another typical non-Newtonian
fluid that behaves as a rigid body at low stress but flows as
a Newtonian viscous fluid once the yield stress is exceeded.
For many viscoplastic fluids, the stress curve of the flowing
part is nonlinear when the shear rate exceeds a critical value.
To capture shear thickening/thinning, µ is modeled by the
Herschel-Bulkley model given by

µ(ϵ̇) =

{
kϵ̇n−1 + σ0

y ϵ̇
−1, ϵ̇ > ϵ̇0

µ0, ϵ̇ ⩽ ϵ̇0
(35)

where k is the consistency coefficient, σ0
y the yield stress, and

ϵ̇0 the critical shear rate. Similar to Eqn. (34), when n = 1,
this model describes the ideal Bingham plastic: n > 1 models
shear thickening Bingham plastic, and n < 1 models the
shear thinning Bingham plastic fluid.

Recent work used the above two models to simulate non-
Newtonian fluids. Zhu et al. [293] simulated various co-
dimensional features of different non-Newtonian fluids, e.g,
shear thinning and thickening for Bingham plastics, and elasto-
plastics. The Carreau-Yasuda model for non-Newtonian fluids
was used on a multi level-set model; semi-implicit methods
were used for elasticity and variable viscosity. On the rims of
thin fluid sheets, viscosity got an improved treatment to yield
twisting motion. Yue et al. [301] used the non-Newtonian
Herschel-Bulkley model to simulate dense foams composed
of microscopic bubbles using MPM. They also proposed a
particle resampling method for MPM and a tearing model
to simulate tearing/connectivity recovery by explicitly han-

dling the weakening regions detected from space. Mixtures of
non-Newtonian fluids were studied by Nagasawa et al. [302].
Using the Herschel-Bulkley model, a nonlinear blending
model that satisfies the five blending laws [303], along with
mass conservation, was proposed to capture non-Newtonian
fluids’ mixture behavior. For viscoelastoplastic materials, a
constraint-based method [304] extended position-based dy-
namics to simulate elastoplastic and highly viscous fluids by
recasting a constitutive model of viscoelasticity which defined
governing equations for a conforming tensor.

(a)

Magnet Magnet

(b)

Fig. 47 Schematic representation of ferrofluids in interaction with
a magnetic field. Sub-figure (a) depicts the superposition of a uniform
vertical magnetic field and the magnetic field originating from an
ellipsoid magnetization. There is a pronounced discontinuity in the
magnetic field on the surface, most significantly at the extremities
where there is a sharp escalation in the field strength. Sub-figure
(b) illustrates a surface perturbation in the magnetized ferrofluid,
resulting in a localized concentration of magnetic induction lines.
The ferrofluid is drawn towards this bump due to a heightened field
strength, which consequently enhances the gradient, amplifying the
perturbation and leading to the formation of a spike.

10.2 Ferrofluids

The dynamic interactions of ferrofluids – liquid media respon-
sive to external magnetic fields – have emerged as an area of
considerable interest within the computer graphics research
community. These magnetically active fluids, originally con-
ceived by NASA to facilitate fuel transfer in spacecraft under
microgravity conditions, derive their magnetic properties
from the incorporation of nanoscale magnetic particles. Upon
exposure to an external magnetic field, these dispersed par-
ticles within the ferrofluid polarize, thereby generating a
distinct internal magnetic field. This induced magnetic field,
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working synergistically with the external one, is pivotal to the
magnetization process of the ferrofluid, as shown in Fig. 47.
The computer graphics simulation of these captivating flu-
ids, however, had not received significant attention, until the
very recent pioneering work of Michels and his team, which
directed attention towards this specialized field [305]. We
reference several key insights from their contributions in the
subsequent discussion.

The interrelationships of these spatial magnetic fields, both
internally produced and externally imposed, conform to the
well-established principles outlined in Maxwell’s equations

∇ ·B = 0,

∇×H = J+
∂D

∂t
,

(36)

where B is the magnetic flux density describing the spatial
magnetic field; H is the total magnetic field intensity; J is
the free current density; and D is the electric displacement
field. The ferrofluids further discussed in this section comply
with the following model

B = µE
0 (H+ME)

H = Hext +Hint,
(37)

where µE
0 is the vacuum permeability, ME is the magneti-

zation field describing the density of the magnetic moment
induced by the total magnetic field, Hext is the external
magnetic field, and Hint is the internal magnetic field gener-
ated by the ferrofluid. The magnetization field is a function
of the known external magnetic field and the internal mag-
netic field, and the current internal magnetic field can be
obtained by solving Poisson’s equation with the assumptions
of ∇ ×Hext = J and ∂D

∂t = 0 in Eqn. (36), since the free
current density J is not influenced by Hint and the electric
displacement produced by the flow of ferrofluid is not strong
enough to influence the system.

Under the effect of magnetic force, fluid particles gather on
tiny bumps near the surface where the synthesized magnetic
field is stronger and pull the fluid to form spikes with attractive
visuals. The spike shapes are also influenced by gravity and
surface tension.

The past few years have witnessed the proposal of var-
ious methods for simulating ferrofluids within the field of
computer graphics. Huang et al. [305] presented the smooth
magnets method which utilizes Lagrangian particles em-
bedded with magnetic nanoparticles to discretize fluids, as
shown in Fig. 48. This method was the first one in the area
of computer graphics to address the first-principle-based
macroscopic simulation of ferrofluids. Their proposed mag-
netization model, along with the magnetic field’s Poisson

Fig. 48 A ferrofluid climbs up a steel helix under a strong external
upward magnetic field to create surface spikes [305].

equation, can be discretized using a smooth kernel function
akin to that used in SPH.

Approaching from a Lagrangian perspective, the volumet-
ric Kelvin force model is utilized to characterize the magnetic
force interactions between particles. Standard Smoothed Par-
ticle Hydrodynamics (SPH) computations employ particles,
enabling the enforcement of incompressibility and surface
tension within ferrofluids. However, the implementation of
a Kelvin force model engenders an unanticipated outward-
directed force on the surface, prompting particles to exhibit
levitation near this surface. To address this phenomenon,
Shao et al. [306] introduced a modification, replacing the
Kelvin force model with a current loop model, thereby creat-
ing an inward force. This alteration permitted the integration
of the magnetic model into Implicit SPH models. Conse-
quently, it enhanced system stability and facilitated the use of
larger time-step increments.

From an Eulerian perspective, Ni et al. [307] presented
a level-set method for simulating various magnetic bodies
including ferrofluids. The interplay between the magnetic field
and the mechanical system was addressed as an interfacial
issue, and a weighted average of the internal and external
magnetic fields was calculated to manage discontinuities.
The resulting magnetic force, coupled with surface tension,
was integrated into the Navier-Stokes equations to direct the
dynamics of the ferrofluids.

Advancing the research further, Huang and Michels [308]
introduced the concept of surface-only ferrofluids, a singular
study to date, tested successfully against real ferrofluids. Un-
like previous approaches that incorporated magnetic force as
an additional term in the momentum equation, their method
infuses the discontinuity of magnetic pressure into the Dirich-
let boundary condition within the pressure-projection of the
Galerkin Boundary Element Method (BEM) based surface-
only liquid solver [183], specifically at the fluid-air interface.
This pioneering surface scheme enhances the Helmholtz de-
composition step in surface-only fluid solvers via a more
precise analytic integration process. Additionally, it aug-
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ments the accuracy of the pressure projection step within
surface-only fluid solvers through a Galerkin BEM.

From the hybrid discretization perspective, Sun et al. [309]
utilized the MPM structure to further simulate nonlinear
magnetic substances in pursuit of a more general magnetic
description. They used the physically-realistic Langevin’s
nonlinear magnetization model so that the magnetic force be-
tween magnetic micro elements is bounded without additional
numerical approximation. Following the concept of MPM,
this method uses particles to carry microscopic magnetic
quantities, and solves Poisson’s equation of the magnetic
fields and the Kelvin force on Cartesian grids. Without inte-
grating the surface tension, this method cannot form stable
spikes when simulating ferrofluids. However, thanks to the
versatility of MPM, it can achieve a unified simulation and
coupling of different magnetic materials.

10.3 Thin-film

Thin films and bubbles are fascinating phenomena that gained
special attention. A common example is a soap bubble floating
in air. Bubbles produced from pure water are usually few,
small, and disappear quickly due to gravity, pressure, and
strong surface tension. To produce more, larger, and longer-
lasting bubbles, surfactants are added to the water, e.g., fatty
acids common in soaps. With surfactants interspersed among
water molecules, surface tension is reduced so that larger
bubbles appear. The tensile deformation of the film will
recover due to the difference in surface tension working like
elasticity, the so-called Marangoni effect (Fig . 49). While the
Marangoni effect models the resilience given by inconsistent
surface tension, the Young-Laplace equation describes the
capillary pressure difference ∆p caused by surface tension
between air and the fluid as

∆p = −γ∇ · n, (38)

where γ is the surface tension and n is the surface outward-
pointing normal. Eqn. (38) relates the pressure difference to
film shape.

Batty et al. [310] developed discrete viscous sheets by
building on (Lagrangian) elastic thin shells. This reduced-
dimensional technique describes the sheets using triangu-
lar meshes with local thickness and used the area-based
surface tension derived from the mid-surface of the (thin)
shell. Wang et al. [311] enhanced this to capture the surface
tension flow using moving-least-squares particles. Mixed
Lagrangian-Eulerian approach models not only volumetric
phenomena (3D) but also those arising from thin shells (2D),
filaments (1D), and even individual points (0D). Surface ten-
sion (and other forces) are handled in a unified way across

Hydrophilic group

Hydrophobic group

Bulk fluid

Film surface

∇γ∇γ

Fig. 49 Schematic diagram of thin-film. Surfactants gather on both
sides of the film. The tensile deformation yields an inconsistent
surfactant concentration which leads to the surface tension gradient
as shown in the figure. The film recovers its shape due to this
gradient.

all (co)dimensions, including codimensional transitions. This
enables simulating complex scenarios requiring careful (sur-
face) tension treatment, such as two water jets colliding and
forming a thin sheet. Similarly to [311], the codimensional
surface tension flow of Zhu et al. [312] also relies on simpli-
cial complexes and transitions between elements of different
(co)dimensions, covering thin fluid sheets, filaments, and
surface tension effects.

Fig. 50 Film catenoid formed between two rings connected with
soap film [313].

Wang et al. [313] extended [311] to yield a thin-film SPH
fluid model (Fig. 50). Films are modeled as codimension one
(surface) particles with local thickness estimates. This particle
setup interacts with a Lagrangian flow simulation using a thin
film shape description. This physically couples aggressive
surface deformations and strong tangential flows. A process
of transformation from codimension one to codimension zero
is used to simulate rupture.

Focusing on viscous thin films, Vantzos et al. [314] pro-
posed a numerical scheme to simulate the thin film equation
(modeled as a height function) on a planar domain, including
gravity and other forces. They add a novel quadratic term to
the governing equation to stabilize flow while keeping visual
fidelity. Their scheme is fully local so it allows an efficient
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GPU implementation that leads to real-time simulations, such
as of honey flowing through honeycombs.

Da et al. [315] studied soap films and foams whose dy-
namics are captured by a Lagrangian vortex sheet model
with an emphasis on circulation. Surfaces are represented us-
ing multi-material triangular meshes supporting topological
changes, and their tension forces lead to a circulation update
rule based on mean curvature.

(a) Frame 20 (b) Frame 21 (c) Frame 35

(d) Frame 44 (e) Frame 85 (f) Frame 145

Fig. 51 Cluster of bubbles [316]. After the top-left bubble bursts
at frame 21, the geometry of the remaining bubbles gradually
transitions to the next equilibrium state, following Plateau’s laws.

By Plateau’s laws, a steady-state film consists of constant
mean curvature parts and minimal surfaces (vanishing mean
curvature). Ishida et al. [316] used this to model evolving
foams via hyperbolic geometric flow, a type of mean curvature
flow (Fig. 51).

Most existing soap film models [315, 316] assumed that
a film is infinitesimally thin and has no influence on its
evolution. Ishida et al. [317] extended such methods to use
film thickness, modeled on non-manifold meshes, as a reduced
degree of freedom in the Navier-Stokes equations, and derive
the motion equations. This provides an incompressible fluid
solver for 2.5D films.

In addition to dynamic effects, bubbles also produce rich
color effects due to the light interference caused by uneven
film thickness. Besides soap bubbles, other fluid dynamics
simulations are also possible on the thin film for additional
visual effects.

Two further methods focus on spherical bubbles and fluid
around them. Hill and Henderson [318] efficiently simulated
fluids on a sphere surface. They handle poles/singularities
of spherical coordinates – which would otherwise render the

motion equations complex if used naively on the sphere. Their
method also enables vector and scalar controls for art-directed
spherical flows. Huang et al. [319] focused on chemical-
mechanical simulation of soap film flows on spherical bubbles
using lubrication theory. Considering the Marangoni effect
and the capillary pressure difference, the stress condition at
the film surface is

Tc · n = (−γ∇ · n− pa)n+∇sγ, (39)

where Tc is the Cauchy’s stress tensor, n is the outward unit
normal vector at the surface, pa is the air pressure, and ∇s is
the 2D gradient operator. The surface tension γ is defined by
a linear model

γ(Γ) = γ0 − γrΓ, (40)

where γ0 is the surface tension of pure water, Γ is the sur-
factant concentration, and γr is a constant that describes the
Marangoni elasticity of the film. The surfactant concentration
Γ is advected by an advection-diffusion equation. Huang et
al.’s advection scheme used spherical coordinates; using local
frames removed some artifacts of [318]. This last method also
proposed a physically accurate shader for real-time rendering
under environmental lighting.

Recently, Deng et al. [320] introduced MELP (Moving
Eulerian-Lagrange Particles), a novel mesh-free method for
incompressible fluids on moving foams and thin films. Their
approach, including multi-MELP for interfacial flow, is able
to model both large-scale surface deformations as well as
detailed flows.

11 Conclusion
Physics-based fluid simulation has been successful in games,
film, and animation. Current advances enable high levels of
control in production and have shown increasing acceptance
and potential in virtual and augmented reality and other
real-time graphics-intensive applications. Recent advances
in physics-based fluid simulation methods rely on a complex
mix of computational efficiency, realism, controllability, and
ability to simulate diverse scenarios. This survey presented an
in-depth overview of these methods over the last decade. We
discussed the different goals in this field, techniques proposed
to address these goals, and challenges of these techniques.

Our survey found seven major themes present in around 300
fluid simulation papers in the computer graphics community
in the last decade – advanced computational approaches,
interaction with materials, multiphase simulations, gas-liquid
interfaces, enhancing fine details, simulation control, and
special fluids. These themes structure our survey to outline
important developments in this period and community. We
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also surveyed existing implementations used to compare and
assess the quality of fluid simulations of various types; see
also Appendix A.

Several open challenges and directions for future work have
emerged while analyzing the above seven themes, outlined
next.

Advanced computational approaches. Adaptive solutions
and GPU parallelization are ubiquitous in computer graphics,
but there is much room for developing such new methods
for physics-based fluids. For instance, adaptivity usually
makes an implementation complex and hard to be applied
on GPU hardware. Spatial and temporal resolution are often
related aspects. In space discretization, interactions between
grids or particles at different scales may cause instability
and fidelity loss, which can also create energy diffusion.
Hence, in addition to improving computational efficiency
and reducing overhead, proposing methods to reduce such
unwanted effects on a wide range of resolution scales is
important for future research. Using neural networks to learn
fluid dynamic behavior will be a hot research topic in the
future, as it has strong prospects for real-time simulation and
industrial control. However, only summarizing physical laws
from a large number of training data lacks underlying logical
support. As such, more attention is likely to be paid next to
how to inject physical prior knowledge into deep learning
models.

Fluid coupling with multi-materials. The key challenge
for such simulations is to keep accuracy, stability, and effi-
ciency when coupling multiple materials in one scenario at
one time. Using different solvers vs materials limited the di-
versity of fluid animation in the past. Current research moves
from merging multiple solvers to developing monolithic ones.
Monolithic solvers can simulate different materials and their
interaction in a single framework which can eliminate stability
issues. Yet, such solvers currently demand high computational
resources. An open challenge is thus mixing hardware and
algorithm designs to better support such solvers.

Multiphase liquids. Future work can explore many inter-
esting aspects. One challenge is that current methods for
incompressible fluid simulation do not handle high-density
ratios well. Linear systems become ill-conditioned under high-
density contrasts so that Jacobi-like solvers fail to converge.
Currently, many parameters of mixing fluids are manually
adjusted. How to control parameters more intuitively to get

desired visual results is worth further study. Modeling tem-
perature, chemical reactions, elasticity blending, and optical
blending are equally important open aspects in this area.

Liquid-gas interaction. Challenges for liquid-gas interac-
tion include simulating gas-liquid phase transition and model-
ing its effect on surface tension, supporting non-manifold thin
film structure, handling the transition between different codi-
mensionalities, producing realistic surface colors for bubbles,
reducing the simulation complexity while preserving accu-
racy for liquid-air coupling, and adding fine splash details that
are not limited by particle size. The topic of achieving richer
gas-liquid interaction phenomena while ensuring stability
and efficiency is a subject of ongoing and future long-term
research.

Fine details enhancement. Many existing detail enhance-
ment techniques achieve detailed fluid surfaces without us-
ing high-resolution discretization. Realistic and fine-grained
appearance representations are the primary pursuit in this
direction. Energy conservation and detail preservation in ac-
cordance with physics laws are also important goals. How to
improve the efficiency and scalability of detail enhancement
is an open challenge for the end aim of providing real-time,
interactive, and generalizable tools for artists. Future work
will likely use deep learning techniques with innovative ex-
plorations in style transfer, high-resolution reconstruction,
and detail generation.

Fluid control. Issues still exist in fluid control – high
memory and computation costs, sensitive parameters, and
manual feature labeling. A key difficulty of control methods
is to achieve precise control. Achieving precise control, along
with high accuracy and efficient computation, is – as for
the other topics studied in this survey – one of the grand
challenges of fluid simulation research.

Special fluids. The challenge of simulating fluids with
special forms lies in unifying governing equations and other
physical characteristics in a consolidated system, which means
integrating different solvers together. The targeted formulation
of a monolithic-style solver is required to perform high-
performance simulation results.

We hope this survey helps to introduce the theoretical con-
cepts underpinning physics-based fluid simulation and their
practical implementation to serve as a guide for researchers
and practitioners as well as facilitate future works to exploit
on the basis of recent developments.
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A Practical resources
For beginners, how to quickly build their own fluid models
and achieve convincing rendering results may be of the most
concern and interest. In this appendix, we recommend several
popular libraries, frameworks, as well as other software tools
to help beginners get their foot in the door and get excited
about learning. In addition, these resources are also useful to
benchmark third-party fluid simulations.

A.1 Focus on simulation:

OpenMaelstrom is an open-source library for the simulation
and rendering of fluids based on the SPH method. It provides
many pressure solvers (IISPH, DFSPH, and Interlinked SPH
for strong fluid-rigid coupling) and boundary handling meth-
ods. Moreover, it features spatial adaptation and full GPU
support.
MantaFlow includes a wide range of Navier-Stokes solver
variants, and its parallelized C++ solver core, Python scene
definition interface, and plugin system allow for quickly
prototyping and testing new algorithms. An advantage of
MantaFlow is that it can be easily integrated into Blender
for end-to-end fluid simulation and rendering. In addition,
MantaFlow can also be coupled with TensorFlow which helps
the development of traditional physical simulation combined
with deep learning techniques.
PhysIKA (Physics-based Interactive Kinematics Architecture)
is a node-based architecture targeted at real-time simulation of
versatile physical materials. Currently, it supports simulating
physical phenomena ranging from fluids, elastic objects and
fractures, etc. PhysIKA is highly modularized and can also
help the research community develop novel algorithms.
PositionBasedDynamics supports the physically-based sim-
ulation of mechanical effects for elastic rods, deformable
solids, rigid bodies, and fluids. SPlisHSPlasH, by the same
author as PositionBasedDynamics, simulates complex fluid
effects based on SPH methods. It includes several SPH solvers
(including WCSPH, PCISPH, IISPH, and DFSPH) and pro-
vides different methods to simulate viscosity, surface tension,
vorticity, and multiphase fluid interaction.
PhysBAM is a multiphysics simulation library, capable of
simulating rigid and deformable bodies, compressible and
incompressible fluids, coupled solids and fluids, fracture, fire,
smoke, hair, cloth, muscles, as well as many other natural
phenomena. The PhysBAM library has a component called
OpenGL Viewer, which displays and analyzes 1D, 2D, and 3D
simulation data generated from PhysBAM projects in order
to facilitate the fast verification and debugging of simulation
methods.

SOFA is an open-source framework targeting real-time simu-
lation, with an emphasis on medical simulation. It is based
on about 15 years of research in physics simulation. SOFA is
being used in many different projects, such as solid mechanics
for the simulation of brain, ear, bones, heart, and liver; and
fluid dynamics for the simulation of fat filling and blood flow
in aneurysms.
FleX is a particle-based simulation technique for real-time
visual effects. It uses a unified particle representation for all
object types, it enables new effects where different simulated
substances can interact with each other seamlessly. It supports
the simulation of rigid bodies, deformable objects, phase
transitions, fluids, gases, and other phenomena. The goal of
FleX is to use the power of GPUs to bring the capabilities of
offline applications to real-time computer graphics.
Realflow is a professional commercial fluid dynamics sim-
ulation software. It can be well connected with other 3D
software, such as Maya, 3ds MAX, Cinema 4D, etc. It is
powerful enough to simulate the fluid effects typically seen
in high-speed macro photography; and to simulate viscous
liquids such as cream, chocolate, oil, honey, and many others.
Moreover, it allows the simulation of sand, snow, ice, and
many other materials. It also provides a highly-optimized
CPU and GPU particle solver where different types of mate-
rials are simulated within the same framework and are able
to interact with each other.

A.2 Focus on modeling and rendering:

Highly accurate fluid simulation results require highly ac-
curate rendering to convey the obtained simulation details.
End-to-end systems cover most aspects of a graphics pipeline,
including modeling, animation, and actual rendering. Here are
some commonly used software for modeling and rendering.
Houdini is a flexible node-based workflow following a
dataflow computing model and allowing users to reuse com-
puting nodes or even entire (sub)networks. Houdini has its
own programming language, VEX, to deal with geometry for
free development. The downside of Houdini is slow rendering.
Blender is an efficient 3D modeling, rendering, and animation
software. Its key advantages are hundreds of open source add-
ons and extensive Python API. Every tool is available for
scripting and customization.
Both MAYA and 3ds MAX are Autodesk products that enable
modeling, mapping, binding, animation, rendering, and more.
MAYA’s strength lies in animation and its special effects,
mostly used for film and television animation; 3ds MAX has
the advantage of being easy to model with and easy to learn.
Both Maya and 3ds MAX are highly professional, accelerate
workflows and provide stunning visuals.
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With the rise of the metaverse concept, NVIDIA Omniverse
simulation platform is poised to launch the next wave of
digitalization. NVIDIA Omniverse is an extensible open plat-
form built for virtual collaboration and physically accurate
real-time simulation. The advantage of Omniverse is that it
facilitates real-time collaboration between users and appli-
cations, simplifying workflows by updating, iterating, and
changing in real time without having to prepare data. It could
change the way designers around the world collaborate and
become the foundation of the metaverse.
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ferenzengleichungen der mathematischen Physik. Mathema-
tische annalen, 1928, 100(1): 32–74, doi:10.1007/BF014488
39.

[32] Sun Y, Shinar T, Schroeder C. Effective time step restrictions
for explicit MPM simulation. Computer Graphics Forum,
2020, 39(8): 55–67, doi:10.1111/cgf.14101.

[33] Goswami P, Batty C. Regional Time Stepping for SPH. In
E Galin, M Wand, editors, Eurographics 2014 - Short Papers,
2014, doi:10.2312/egsh.20141011.

[34] Fang Y, Hu Y, Hu SM, Jiang C. A Temporally Adap-
tive Material Point Method with Regional Time Stepping.
Computer Graphics Forum, 2018, 37(8): 195–204, doi:
10.1111/cgf.13524.

[35] Reinhardt S, Huber M, Eberhardt B, Weiskopf D. Fully
Asynchronous SPH Simulation. In Proceedings of the ACM
SIGGRAPH / Eurographics Symposium on Computer Ani-
mation, SCA ’17, 2017, doi:10.1145/3099564.3099571.

[36] Losasso F, Gibou F, Fedkiw R. Simulating Water and Smoke
with an Octree Data Structure. ACM Trans. Graph., 2004,
23(3): 457–462, doi:10.1145/1015706.1015745.

[37] Setaluri R, Aanjaneya M, Bauer S, Sifakis E. SPGrid: A
Sparse Paged Grid Structure Applied to Adaptive Smoke
Simulation. ACM Trans. Graph., 2014, 33(6), doi:10.1145/
2661229.2661269.

[38] Goldade R, Wang Y, Aanjaneya M, Batty C. An Adaptive
Variational Finite Difference Framework for Efficient Sym-
metric Octree Viscosity. ACM Trans. Graph., 2019, 38(4),
doi:10.1145/3306346.3322939.

[39] Ando R, Batty C. A Practical Octree Liquid Simulator with
Adaptive Surface Resolution. ACM Trans. Graph., 2020,
39(4), doi:10.1145/3386569.3392460.

[40] Shao H, Huang L, Michels DL. A Fast Unsmoothed Aggre-
gation Algebraic Multigrid Framework for the Large-Scale
Simulation of Incompressible Flow. ACM Trans. Graph.,
2022, 41(4), doi:10.1145/3528223.3530109.

[41] Ferstl F, Westermann R, Dick C. Large-Scale Liquid Sim-
ulation on Adaptive Hexahedral Grids. IEEE Transactions
on Visualization and Computer Graphics, 2014, 20(10):
1405–1417, doi:10.1109/TVCG.2014.2307873.

[42] Aanjaneya M, Gao M, Liu H, Batty C, Sifakis E. Power
Diagrams and Sparse Paged Grids for High Resolution
Adaptive Liquids. ACM Trans. Graph., 2017, 36(4), doi:
10.1145/3072959.3073625.

[43] Xiao Y, Chan S, Wang S, Zhu B, Yang X. An Adaptive
Staggered-Tilted Grid for Incompressible Flow Simulation.
ACM Trans. Graph., 2020, 39(6), doi:10.1145/3414685.3417
837.

[44] Gao Y, Li CF, Ren B, Hu SM. View-Dependent Multiscale
Fluid Simulation. IEEE Transactions on Visualization and
Computer Graphics, 2013, 19(2): 178–188, doi:10.1109/TV
CG.2012.117.

[45] English RE, Qiu L, Yu Y, Fedkiw R. Chimera Grids for
Water Simulation. In Proceedings of the 12th ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation,
SCA ’13, 2013, 85–94, doi:10.1145/2485895.2485897.

[46] Li W, Bai K, Liu X. Continuous-Scale Kinetic Fluid Sim-
ulation. IEEE Transactions on Visualization and Computer
Graphics, 2019, 25(9): 2694–2709, doi:10.1109/TVCG.201
8.2859931.

[47] Zhu B, Lu W, Cong M, Kim B, Fedkiw R. A New Grid
Structure for Domain Extension. ACM Trans. Graph., 2013,
32(4), doi:10.1145/2461912.2461999.

[48] Ibayashi H, Wojtan C, Thuerey N, Igarashi T, Ando R.
Simulating Liquids on Dynamically Warping Grids. IEEE
Transactions on Visualization and Computer Graphics, 2020,
26(6): 2288–2302, doi:10.1109/TVCG.2018.2883628.

[49] Adams B, Pauly M, Keiser R, Guibas LJ. Adaptively Sampled
Particle Fluids. ACM Trans. Graph., 2007, 26(3): 48–es,
doi:10.1145/1276377.1276437.

[50] Orthmann J, Kolb A. Temporal Blending for Adaptive SPH.
Computer Graphics Forum, 2012, 31(8): 2436–2449, doi:
10.1111/j.1467-8659.2012.03186.x.

[51] Winchenbach R, Hochstetter H, Kolb A. Infinite Continuous
Adaptivity for Incompressible SPH. ACM Trans. Graph.,
2017, 36(4), doi:10.1145/3072959.3073713.

[52] Zhai X, Hou F, Qin H, Hao A. Fluid Simulation with Adaptive
Staggered Power Particles on GPUs. IEEE Transactions on



Physics-based fluid simulation in Computer Graphics:
Survey, research trends, and challenges 41

Visualization and Computer Graphics, 2020, 26(6): 2234–
2246, doi:10.1109/TVCG.2018.2886322.

[53] Winchenbach R, Akhunov R, Kolb A. Semi-Analytic Bound-
ary Handling below Particle Resolution for Smoothed Parti-
cle Hydrodynamics. ACM Trans. Graph., 2020, 39(6), doi:
10.1145/3414685.3417829.

[54] Winchenbach R, Kolb A. Optimized Refinement for Spatially
Adaptive SPH. ACM Trans. Graph., 2021, 40(1), doi:10.114
5/3363555.

[55] Winchenbach R, Hochstetter H, Kolb A. Constrained Neigh-
bor Lists for SPH-based Fluid Simulations. In L Kavan, C Wo-
jtan, editors, Eurographics/ ACM SIGGRAPH Symposium on
Computer Animation, 2016, doi:10.2312/sca.20161222.

[56] Winchenbach R, Kolb A. Multi-Level Memory Structures
for Simulating and Rendering Smoothed Particle Hydrody-
namics. Computer Graphics Forum, 2020, 39(6): 527–541,
doi:10.1111/cgf.14090.

[57] Greengard L, Rokhlin V. A fast algorithm for particle sim-
ulations. Journal of Computational Physics, 1987, 73(2):
325–348, doi:10.1016/0021-9991(87)90140-9.

[58] Zhang X, Bridson R. A PPPM Fast Summation Method
for Fluids and Beyond. ACM Trans. Graph., 2014, 33(6),
doi:10.1145/2661229.2661261.

[59] Angelidis A. Multi-Scale Vorticle Fluids. ACM Trans. Graph.,
2017, 36(4), doi:10.1145/3072959.3073606.

[60] Nakanishi R, Nascimento F, Campos R, Pagliosa P, Paiva A.
RBF Liquids: An Adaptive PIC Solver Using RBF-FD. ACM
Trans. Graph., 2020, 39(6), doi:10.1145/3414685.3417794.

[61] Wu K, Truong N, Yuksel C, Hoetzlein R. Fast Fluid Simula-
tions with Sparse Volumes on the GPU. Computer Graphics
Forum, 2018, 37(2): 157–167, doi:10.1111/cgf.13350.

[62] Chen Y, Li W, Fan R, Liu X. GPU Optimization for High-
Quality Kinetic Fluid Simulation. IEEE Transactions on
Visualization and Computer Graphics, 2022, 28(9): 3235–
3251, doi:10.1109/TVCG.2021.3059753.

[63] Ando R, Thurey N, Tsuruno R. Preserving Fluid Sheets with
Adaptively Sampled Anisotropic Particles. IEEE Transactions
on Visualization and Computer Graphics, 2012, 18(8): 1202–
1214, doi:10.1109/TVCG.2012.87.
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