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Abstract Particles are disordered throughout the entire process of fluid simulation using particle-based-
methods, extracting surfaces through following up particles is unlikely to achieve. Therefore, it is rea-
sonably necessary to extract fluid surfaces called surface reconstruction which has been research focus in
particle-based fluid simulation for decades. To construct more smooth surfaces and enhance reconstruction
efficiency in fluid simulation, this paper addresses an efficient anisotropic surface reconstruction method for
particle-based fluid simulation. First, we simplify and modify the construction of traditional anisotropic
kernel function. Second, we divide particles into near-surface particles and internal particles according to
the analysis of particles’ eigenvectors. Finally, near-surface particles are involved in the calculation of
surface reconstruction while internal particles are directly assigned color field values through the number of
neighbor particles. Experimental results show that this algorithm ensures smoothness and geometric char-
acteristics of fluid surfaces reconstructed. Compared to existing algorithms, this approach is simple and easy
to implement and greatly improves the operation efficiency.

Keywords Fluid simulation � SPH � Surface reconstruction � Anisotropic kernels

1 Introduction

Fluid phenomenon widely exists in nature, daily life and industrial production. The simulation of fluid also
called fluid animation has always been the significant content in the research of physical-based animation as
well as computer graphics. According to the different spatial discretization way, physically based animation
can be divided into two main categories: mesh-based methods and mesh-free methods. In mesh-based
methods, the simulation domain is discretized into mesh grids and physical attribute values on grid points
(such as velocity and density) which are obtained by solving the governing equations. Nevertheless, the fluid
volume is discretized into sampled particles in mesh-free methods. Moreover, each particle has physical
properties and is advected by the governing equations. The mesh-free methods have the advantages of mass
conservation, flexible extensibility of unbounded domains that make them easier to simulate more complex
phenomena (such as spindrift and explosion), they have obtained rapid development in recent years and
have become alternative ways of grid method effectively. Among various mesh-free approaches, smoothed
particle hydrodynamics (SPH) is the most popular method for simulating fluid due to computational sim-
plicity and efficiency.

Although the SPH method has been used to simulate all kinds of fluid phenomenon, it is very difficult to
extract fluid surface. In addition, how to construct a smooth and flat fluid surface is an urgent issue that

X. Wang (&) � X. Ban � X. Liu � Y. Zhang � L. Wang
School of Computer and Communication Engineering, University Science and Technology Beijing, Beijing 100083,
People’s Republic of China
E-mail: wang1xiao2kun3@163.com

J Vis
DOI 10.1007/s12650-015-0317-7

http://crossmark.crossref.org/dialog/?doi=10.1007/s12650-015-0317-7&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s12650-015-0317-7&amp;domain=pdf


needs to be solved. SPH method is difficult to construct smooth surface due to its irregular particle
distribution, hence color field method is always used for surface reconstruction. On account of the surface
being not smooth enough and usually having bumps or indentations, it is reconstructed by the traditional
color field method. At the same time, existing anisotropic approaches extracting fluid surface is seriously
slow, therefore, this paper proposes an efficient surface reconstruction algorithm based on anisotropic
improvement of color field function. First, we construct an anisotropic kernel function for each particle
according to the neighbor particles distribution. Compared to the traditional anisotropic kernel function, the
computing method of kernel function proposed in this paper is more simple. Particles can be divided into
near-surface particles and internal particles according to the analysis of the particles’ eigenvector. The near-
surface particles are involved in calculation when processing surface reconstruction. The internal particles’
color field values are directly assigned by means of their number of neighbor particles, which further
improves the calculation efficiency.

2 Related work

Since extracting fluid surfaces is vital for realistic animation, approaches for reconstructing and tracking
fluid surfaces have attracted widespread attention when fluid simulation was first introduced in computer
graphics. The reconstructing fluid surfaces can be divided into two categories: mesh-based methods and
mesh-free methods. Under the framework of mesh-based methods, researchers have presented a large
number of approaches to reconstruct surfaces. Osher and Fedkiw (2002) realized the Euler fluid surfaces
tracking using the level set method. To solve the problem of mass loss in level set method, particle level set
method (Enright et al. 2002) and semi-Lagrangian contouring method (Enright et al. 2005) have been
proposed. Muller (2009) employed marching cubes grid to sample fluid surfaces, while keeping the grid
sampling points as before. Wojtan et al. (2010) rebuilt the grid using convex hull method that kept features
of thin fluid. The following year, Bhattacharya et al. (2011) improved Williams’s surface reconstruction
method by minimizing energy consumption of the surface represented by level set. Wojtan et al. (2009) used
iso-surface building methods to rebuild grids which changed topological structure. Hirt and Nichols (1981)
proposed volume-of-fluid methods (VOF). Brochu and Bridson (2006) introduced explicit surface tracking
method.

For the past few years, with the application of SPH framework in fluid simulation, researchers carried out
an in-depth study and exploration on reconstructing surfaces based on mesh-free method. Blinn (1982)
presented the classic blobby spheres approach. A new kind of implicit surface equations is employed using
distance of sampling points to the scattered point as a parameter. The values of equations are used to
determine whether the sampling points are on the surface; it successfully realizes surface extraction of the
discrete points. One of the defects is that high or low densities of particles will cause bumps or indentations
on the surface. Muller et al. (2003) proposed a reconstructing approach which is similar to level set method
by calculating the color field function. Fluid free surface can be constructed simply and rapidly by this
method, but the surface extracted is rough and the particles near the surface will cause bumps. Zhu and
Bridson (2005) modified Blinn’s algorithm to correct local particle density variations. Primarily, they
calculate fluid particles’ weighted average of coordinates and radius on the basis of the neighbor particles’
position and radius. Then, they apply the particles’ weighted average coordinates and radius to the calcu-
lation of reconstructing surfaces, thus get a relatively smooth fluid surface that do not have obvious bumps.
Adams et al. (2007) put forward improved method by tracking the particle-to-surface distances over time
which made the surfaces more smooth. But the surface expression using implicit function is time-consuming
when implicit function is constructed. Williams (2008) achieved global smoothness on surface mesh through
solving a nonlinear optimization problem iteratively. Yu et al. (2012) proposed a new reconstruction method
for fluid surfaces. They only construct surfaces at the beginning of the simulation, and then for the each next
frame, they merely process triangular mesh segmentation and integration of operations to previous frame
surface, no longer reconstruct fluid surfaces each frame. Yu and Turk (2013) employed Muller’s 2003
implicit surface method and introduced the anisotropic kernels to the implicit surface which extract more
real and smooth surfaces of the fluid.

Essentially, SPH method’s core idea is to use summation of neighbor particles’ value in local area to
replace field function and its derivative. The distribution of local area neighbor particles will directly affect
the calculation results and the accuracy of SPH method in consequence. Particles on the surface have less
neighbors than those in the internal which causes smaller density obtained by SPH formula. Worse still, it
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results in a series of influence and eventually leads to the surface distortion. To solve this problem,
Schechter and Bridson (2012) addressed ghost SPH to compensate for surface particle density variations.
They create a random ghost particle layer in the external of original particle boundary that modifies SPH
kernel function calculation by increasing particle number within the scope of support domain. Besides, Liu
and Liu (2003) presented ASPH method to solve the SPH calculation of lacking neighbors in local region.
They construct the distance covariance matrix of the particles and their neighbors to analyze the distribution
characteristics of the surrounding particles, then acquire eigenvectors served as distance weight of different
direction to achieve adaptive effects. Then Yu and Turk (2013), inspired by ASPH method, introduced the
anisotropic kernels method that applied weighted principle component analysis (WPCA) (Koren and Carmel
2003) to orient and scale the anisotropic kernel. In their method, each particle owns a unique anisotropic
kernel function obtained through the particle’s neighborhood distribution.

Yu’s method solved the problem of smoothness on fluid surface to some extent. Each particle has its own
influence scope when calculating the color field. Unlike the traditional methods, Yu’s method cannot
directly iterate over all pixels to complete the color field calculation. Whereas it needs to traverse pixels
based on each particle’s influence range and bring repeated traversal of the pixel, the calculation was
directly affected by the number of particles. Moreover, it requires respective matrix calculations since the
kernel function varies for each particle, which is time-consuming and inefficient. To solve the above
problems, we propose an efficient SPH-oriented fluid surfaces extracting method using anisotropic kernels
on the basis of Yu’s method. We modify the formulation of anisotropic kernels, then classify particles by
extracting the location characteristics, and only reconstruct surfaces by the near-surface particles and
directly assign color field values for internal particles. Without affecting the effect of reconstruction, the
method in this paper preferably saves computing resources and greatly improves efficiency of the extracting
algorithm.

3 SPH framework for fluid simulation

In the Lagrangian description, flow-controlled partial differential equations of Navier–Stokes for fluids can
be expressed as

dqi
dt

¼ �qivi; ð1Þ

qi
Dvi
Dt

¼ �rpi þ qigþ lr2vi; ð2Þ

where vi is the velocity, qi is the density, pi is the pressure, l is the viscosity coefficient and g represents the
external force field. Equation (1) is mass equation and Eq. (2) is the momentum equation.

The theory of SPH (Becker and Teschner 2007) is to utilize the form of discrete particles to characterize
the successive fields and use integration to approximate the fields. For particle i at location xi,

A xið Þh i ¼
X

j

mj

Aj

qj
W xi � xj; h
� �

ð3Þ

where mj and qi represent particle mass and density, respectively, W xi � xj; h
� �

is the smoothing kernel and
h the smoothing radius.

Applying Eq. (3) to the density of a particle i at location xi yields the summation of density:

qi ¼
X

j

mjW xi � xj; h
� �

ð4Þ

Thus, forces between particles including pressure fPi and viscous force fvi can be represented as:

fPi ¼ �
X

j

mj

Pi

q2i
þ Pj

q2j

 !
rWij ð5Þ

fvi ¼ l
X

j

mj

vjiqj
r2

Wij ð6Þ
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In this article, We employ Tait equation (Muller et al. 2003) to calculate the pressure, that is

pi ¼ q0c
2
S

c
qi
q0

� �c
� 1

� �
. Where q0= 1000 is the rest density of the fluid, c = 7 is stiffness parameters and cs is

velocity of sound. We use the method in reference (Akinci et al. 2012) to compute viscous force.

4 Surface reconstruction based on anisotropic kernels

4.1 Surface definition

We exploit implicit surfaces to represent fluid surfaces in this paper. In the first place, we define a domain �D
cover the fluid space D that contained all particles, that is D � �D. Fluid surface is S ¼ oD which means a
iso-surface of spatial function /ðxÞ : Rd ! R, that is

S ¼ oD ¼ fxjx 2 �D;/ðxÞ ¼ 0g ð7Þ

Furthermore, the internal and external regions of fluids can be expressed as follows,

/ðxÞ[ 0; 8x 2 DnoD
/ðxÞ ¼ 0; 8x 2 oD

/ðxÞ\0; 8x 2 �DnD

8
<

: ð8Þ

In simulation, the definition above is easy to discretize, that is to say, we just need to divide �D into small
grids xði; j; kÞ 2 �D, where (i, j, k) is the grid index. After discretization, Eq. (8) can be defined as:

/ði; j; kÞ[ 0; 8xði; j; kÞ 2 DnoD
/ði; j; kÞ ¼ 0; 8xði; j; kÞ 2 oD

/ði; j; kÞ\0; 8xði; j; kÞ 2 �DnD

8
<

: ð9Þ

For the definition of surface, Muller (2003) used the following formula:

/ðxÞ ¼
X

j

mj

1

qj
Wðx� xj; hjÞ � C ð10Þ

where C is a positive constant, Wðx� xj; hjÞ is kernel function that can select any suitable smoothing
function (Fig. 1).

4.2 Surface reconstruction using anisotropic kernels

Normally, the color field definition (Muller et al. 2003) is as follows

/ðxÞ ¼
X

j

mj

qj
Wðx� xj; hjÞ ð11Þ

In Eq. (11), W is isotropic kernel function and its expression is

Fig. 1 In the figure, green region signifies interior /[ 0, blue region signifies exterior /\0, the color depth represents the
intensity of the field, red curve implies iso-surface / ¼ 0. Surface expressed by implicit surface
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Wðr; hÞ ¼ r
hd

P
jjrjj
h

� �
ð12Þ

where r is a scaling factor, d is the dimension of the simulation, r is a radial vector, and P is a symmetric
decaying spline with finite support.

To cope with the problem of density distributions near the surface, Yu and Turk (2013) capture the
density distribution more accurately by replacing h with a d � d real positive definite matrix G, they redefine
W to be an anisotropic kernel

Wðr;GÞ ¼ r detðGÞPðjjGrjjÞ ð13Þ

In the preceding equation, r ¼ x� xi, x can be treated as any position, the linear transformation G rotates
and stretches the radial vector r.

To analyze the impact of particles on the surrounding location, it is necessary to establish the covariance
matrix of the particles. The covariance matrix Ci of particle i is formulated as

Ci ¼ Eððxj � xiÞðxj � xiÞTÞ ð14Þ

Yu replaces xi with �xi to produce a more smooth surface, thus Eq. (14) is rewritten as

Ci ¼ Eððxj � �xiÞðxj � �xiÞTÞ ð15Þ

�xi ¼
X

j

wijxj=
X

j

wij ð16Þ

The function wij is an isotropic weighting function

wij ¼
8

ph3

1� 6r2

h2
þ 6r3

h3
0\r\ h

2

2 h�rð Þ3
h3

h
2
\r\h

0 r\0 or r[ h

8
>><

>>:
ð17Þ

where r is the distance of particle location between xi and xj, h is the supporting radius of smoothing kernel.
To include enough neighborhood particles and obtain reasonable anisotropy information, we choose r ¼ 2h.

For each particle, singular value decomposition (SVD) can be performed on covariance matrix Ci since
Ci is a real symmetric matrix. Ci can be written as

Ci ¼ RRRT ð18Þ
X

¼ diagðr1; . . .; rrmdÞ ð19Þ

In the above formulas, R is a 3� 3 rotation matrix with the eigenvectors of Ci as column vectors. Each
column Ri that represents distribution axis of Ci corresponds to eigenvalue ri in R. R is a diagonal matrix
with eigenvalues r1 � � � �rrmd , so the quantity of neighbor particles is large in the R1 direction and smallest
in the R3 axis. To avoid extreme conditions and unexpected situation to occur such as r1 is much greater
than rrmd when matrix transformation is carried out, Yu modifies covariance matrix Ci. Primarily, they
check whether r1=rrmd is smaller than krmr with krmr [ 1. Then use G ¼ knI to replace anisotropic kernels
for internal fluid particles as well as isolated particles. Next, they employ ~Ci instead of the modificatory Ci,
but to ensure the kernel W of particle i deform in line with Ci, G must be an inversion of Ci and be scaled by
1 / h to maintain the same form with W. In summary, G can be expressed as

ri
0 ¼ ri r1\krri

r1
kr

r1 [ krri

�
ð20Þ

G ¼ 1

h
R ~R�1RT ð21Þ

4.3 Advanced anisotropic surface reconstruction

Seen from the previous paragraph that matrix G realizes the functions of anisotropic kernels. We can control
the scaling of r on three axes that R included through the matrix G and determine the value of Wðr; hÞ by
Grk k. In this part, we will explain the working principle of Grk k. Eigenmatrix R of Grk k has three
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orthogonal components R1, R2, R3 which are all unit vector. As a result, r can be alternated by R1, R2, R3 in
three-dimensional space. That is,

r ¼ c1 � R1 þ c2 � R2 þ c3 � R3 ð22Þ

Therefore, Gr can be written as

Gr ¼ 1

h
R ~R

�1
RT � ðc1 � R1 þ c2 � R2 þ c3 � R3Þ

¼ 1

h
R ~R

�1ðc1 � RT � R1 þ c2 � RT � R2 þ c3 � RT � R3Þ
ð23Þ

Because

RT ¼ ½R1;R2;R3�T ¼
R1

T

R2
T

R3
T

2
4

3
5 ð24Þ

c1 � RT � R1 þ c2 � RT � R2 þ c3 � RT � R3 ¼
c1
c2
c3

2
4

3
5 ð25Þ

From the above, we can find R � r as the projection of r in the direction of R1, R2, R3, which is consistent
with the concept of vector inner product. It also implies, convert coordinates of r from the coordinate system
((1, 0, 0), (0, 1, 0), (0, 0, 1)) to R1, R2, R3, that is the coordinate from (x, y, z) to ðc1; c2; c3Þ. Figure 2
illustrates the transformation process of coordinate system, the solid line is the initial coordinates, dotted
line is the coordinates after transformation.

In conclusion, Gr can further be expressed as:

Gr ¼ 1

h
R ~R�1 �

c1
c2
c3

2
4

3
5 ¼ 1

h
R

1
r1

1
r2 0

1
r3 0

2
64

3
75 �

c1
c2
c3

2
4

3
5 ¼ 1

h
R �

c1
r1

c2
r2 0

c3
r3 0

2
4

3
5 ð26Þ

From the preceding equation, we can detect the scaling effect of r through eigenvalue and ri0 is modified by
Eq. (20).

But

R �

c1
r1

c2
r2 0

c3
r3 0

2

64

3

75 ¼ c1

r1
� R1 þ

c2

r20
� R2 þ

c3

r30
� R3 ð27Þ

It is almost the inverse operation of the formula on (25). That is, converting the transformed coordinates to
the original coordinates. Actually, Eq. (27) is redundant in numerical analysis. Because in the actual
calculation, we are only concerned with the changes of L1 norm value after stretching. The following brief
proof

Fig. 2 a Standard coordinate system b transformed coordinate system c compared the two coordinate systems the coordinate
transformation
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Grk k ¼ 1

h
� R ~R

�1
RT � r

			
			

¼ 1

h
� c1

r1
� R1 þ

c2

r20
� R2 þ

c3

r30
� R3

� �				

				

¼ 1

h
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1

r1

� �2

þ c2

r20

� �2

þ c3

r30

� �2
2

s

¼ 1

h
� ~R

�1
RT � r

			
			

ð28Þ

Thus, we can replace G with G0,

G0 ¼ ~R�1RT ð29Þ

Compared with Eq. (21), the expression of formula (29) is simpler with higher computational efficiency and
same results. The definition of W is then modified as:

Wðr;G0Þ ¼ r detðG0Þj jPðjjG0rjjÞ ð30Þ

Notice that formula (30) taken the absolute value of the determinant of G0. The reason is that the absolute
value of the determinant of G0 and G is equal which is guaranteed by the determinant’s characteristics. The
determinant of G can be guaranteed positive according to Eq. (31). However, determinant of G0 needs to be
guaranteed positive through Eq. (32).

detG ¼ ðdetRÞ detðRÞðdetRTÞ ¼ ðdetRÞ2 detðRÞ ð31Þ
detG0 ¼ detðRÞðdetRTÞ ¼ ðdetRÞ detðRÞ ð32Þ

Under the three-dimensional coordinates, determinant indicates the volume composed by column vectors of
matrix R. Because column vectors of R are unit vectors and perpendicular to each other, determinant of R is
1 or -1. Besides, determinant of diagonal matrix is the product of diagonal elements, referring to formula
(33). Hence, Eq. (30) can be further represented by formula (35).

detR ¼ PRii ð33Þ
detG ¼ absðdetG0Þ ¼ PRii ð34Þ

Wðr;G0Þ ¼ r �P
X

ii

� PðjjG0rjjÞ ð35Þ

Overall, Eq. (35) is the color field function proposed in this article. Compared with the original formula
(13), the approach deduced in this paper simplifies matrix operations and reduces the computational costs
without changing the final results. The results will be shown in part 5.

Fig. 3 Schematic diagram of a sphere consists of 925 particles
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4.4 Extracting surface and near-surface particles

The interior fluid particles have no substantial contribution to reconstructing surfaces in practice. To
further increase the computational efficiency and save computing resources, unlike traditional method
based on neighbor particles classification, we classify the particles according to its eigenvalues. Since the
characteristic values have been solved in the previous calculation, the classification of particles brings no
additional costs. For the sake of ensuring the weak compressibility, SPH method usually forces the particle
to keep an average particle spacing with little change while running in the simulation. According to the
state equation, the average distance changes between general particles do not exceed 1/100 (Liu and Liu
2003). Consequently, we have analyzed two typical scenarios that are: cube and sphere. A sphere com-
prised 925 particles which is shown in Fig. 3 and its ratio curve of r3=r1 is referred in Fig. 4. We
calculate the eigenvalues r1;r2;r3(r1\r2\r3) and ratio r3=r1, r3=r2 for each particle. We found that
the more they are near to the center of the geometry, the values of r1;r2;r3 is more closer and the equal

Fig. 5 The eigenvalue ratio r3=r1 of the cubes 1000 particles, red color represents the surface particles and blue color
represents the internal particles

Fig. 4 The eigenvalue ratio r3=r1 of the spheres 925 particles, red color represents the surface particles and blue color
represents the internal particles
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Fig. 7 a The isotropic kernels method, b the anisotropic kernels method, c our method and d comparison of particles number
Surface reconstruction in comparison with free surface

(a) (b)

Fig. 6 a Not processing internal particle, leaving a cavity b assign values for internal particle, eliminating cavity comparison
of handling internal particles, a not calculated internal particle b calculated the internal particle
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trend of r1;r2 is more faster. Furthermore, r3=r1 is equal with r3=r2 at the center axis. This phenomenon
is well suited for particle classification strategy. Through the experiments, we discover r3=r1 is greater
than or equal to r3=r2 and if r3=r1 is very close to r3=r2 it is probably an internal particle. In other
words, r3=r1 can be used to distinguish surface particles and internal particles, and r3=r2 can be used to
classify internal particles.

From the viewpoint of the particle classification, we just need to separate the surface particles and
internal particles. However, due to the non-uniform distribution of particles when using SPH method,
reconstructing surfaces only with surface particles may be incomplete and invariably have bumps for
lacking particles. It is necessary to classify the particles near the surface to compensate for lacking of surface
particles. So, we can treat surface particles and near-surface particles as one category while internal particles
as another category. It seems that the ratio r3=r1 shown in Fig. 4 fluctuates near the surface that can exactly
provide assistance for the classification. Owing to require regarding surface particles and near-surface
particles as one category, in the case of fluctuations, we merely analyze ratio threshold of boundary particles
that will naturally draw the near-surface particles to surface particles. From the figure, we can find that the

Fig. 8 a The isotropic kernels method, b the anisotropic kernels method, c our method and d comparison of particles number
Surface reconstruction in comparison with cube fluids
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ratio of eigenvalues near the surface is slightly larger than the surface particles. Figure 4 confirms the above
ideas, when we have chosen the minimum ratio of boundary particles as threshold, near-surface particles can
be separated from the internal particles and served as surface particles.

Fig. 9 Comparison of computation time in double breaking dam experiment, blue line expresses computing time of the
anisotropic kernels method each frame, while red line shows computing time of our method each frame

Fig. 10 Efficiency analysis for double breaking dam experiment, the red line implies surface particles proportion of all
particles each frame, the blue line represents the increasing rate of efficiency compared with anisotropic kernels method each
frame

Table 1 Comparison of anisotropic kernels method and our method

Scene Method #p (K) Total comp. time (s) Speed up

Double breaking dam Isotropic kernels 205 2744.1 –
Anisotropic kernels 205 12903 –
Our method 205 9059.4 1.42

1 cube fluid–rigid coupling Anisotropic kernels 172 10310 –
Our method 172 6344.7 1.62

16 cubes fluid–rigid coupling Anisotropic kernels 272.8 28000 –
Our method 272.8 16943 1.65
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Figure 5 shows another scene of cube that we analyzed. Since the analysis is done on the sphere, we
directly provide the cube’s final curve of eigenvalues ratio r3=r1. The picture shows the similar results with
sphere, so we can select the minimum eigenvalues ratio of boundary particles as the threshold to classify
surface particles and near-surface particles with internal particles.

particle type ¼ surface particle r3=r1 [ thresholds
inner particle otherwise

�
ð36Þ

where thresholds is inffr3=r1g. Particle distribution information is hardly to be known in advance, so it is
impossible to distinguish the boundary particles and internal particles. But by the previous analysis, it is not
necessary to choose very accurate threshold, so we select thresholds¼ 1:1 in this article. Due to the weak
compressibility of the fluid, the analysis of cubic and spherical fluids for selecting threshold can expand to
other form of fluids.

Fig. 11 Comparison of computation time in 1 cube fluid–rigid coupling experiment, blue line expresses computing time of the
anisotropic kernels method each frame, while red line shows computing time of our method each frame

Fig. 12 Efficiency analysis for 1 cube fluid–rigid coupling experiment, the red line implies surface particles proportion of all
particles each frame, the blue line represents the increasing rate of efficiency compared with anisotropic kernels method each
frame
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After classification, we have to calculate the color field of particles and we can utilize Eq. (37) for
surface and near-surface particles. We assign values for internal particles using formula (39). If we only
calculate the color field of surface particles and do not handle internal particles, it will have inner and outer
surfaces seen by the marching cubes algorithm, shown in Fig. 6. This situation would be difficult to render
the fluid, so we use the following expression to assign the color field values for internal particles.

Winner ¼ iso=neighbor num ð37Þ

From the above formula, we can apparently find out that the expression has nothing to do with the distance
and other variables, it only relates to the number of particle neighbors. As a consequence, the calculation is
very simple and will not bring extra computational overhead. Moreover, to ensure the smoothness of the
surface, Yu uses Gaussian smoothing of the formula (14) for all particles while we simply apply formula
(14) for surface particles that further enhance the efficiency.

Fig. 13 Comparison of computation time in 16 cubes fluid–rigid coupling experiment, blue line expresses computing time of
the anisotropic kernels method each frame, while red line shows computing time of our method each frame

Fig. 14 Efficiency analysis for 16 cubes fluid–rigid coupling experiment, the red line implies surface particles proportion of all
particles each frame, the blue line represents the increasing rate of efficiency compared with anisotropic kernels method each
frame
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5 Implementation and results

The experiments verified the validity of the algorithms in this article. The simulation is performed on a
quad-core Intel i5-3470 (6M Cache, 3.2 GHz) with 8GB memory. Bullet is used for simulating rigid objects
and OpenMP is used for parallelize particle computations. The simulation and surface reconstruction are
actualized with C?? language and multi-threading technology. The searching process of approaching
particle in simulation algorithm uses space background grid to carry out Hash lookup. Surface recon-
struction employs the anisotropic kernel function to construct color field that is proposed in Sect. 4, and then
uses the marching cubes algorithm to reconstruct surfaces, where singular value decomposition of the matrix
is based on the JAMA and TNT open source maths library of NIST. The real-time simulation and results of
surface structure is displayed by OpenGL 3D Graphics Library, while the video is recorded by OpenCV
Library and rendering is implemented in Blender v2.73.

A set of surface reconstruction in breaking dam experiments is shown in Fig. 7. The figure shows,
respectively, the isotropic kernel method of Muller (2003), the anisotropic kernel method of Yu and Turk
(2013) and our approach proposed in this paper. The histogram displays the number of particles involved in
the calculation. In this set of experiments, the isotropic kernel method takes 1363 ms, but the surface is
rough. The anisotropic kernel method takes 1363 ms and the surface seen from the figure is very smooth.
While the method described in this article takes 5398 ms, it is not different from the sense of reality with
Yu’s anisotropic kernel approach. As can be seen from the chart, this scene has a total of 22,397 points after
removing 1399 scattered and solitary points.

Methods of isotropic kernel and anisotropic kernel all use 20,998 points to reconstruct the surfaces, while
we merely use 16,327 points in surface reconstruction after the classification of surface points. From the
viewpoint of time efficiency, we gain relative 11 % efficiency improvement to anisotropic kernel method.

Fig. 15 a The isotropic kernels method, b the anisotropic kernels method and c our method surface reconstruction of double
breaking dam experiment
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As the number of particles is small in this experiment and particles are mostly surface particles, the
efficiency gained is comparatively low.

Figure 8 shows the surface reconstruction effects of the cube and a total of 85,731 particles in experi-
ments. Muller’s isotropic kernels method (Muller et al. 2003) costs 5514 ms, Yu’s anisotropic kernels
method (Yu and Turk 2013) uses 24,660 ms, while we use 30,598 vertices as surface points in surface
reconstruction, cost 14,320 ms and obtain 41.9 % efficiency improvement. This scenario has more particles,
thus obtaining a quite good efficiency. In addition, it can be discovered from the figure that our method
produces more clear, sharp and realistic edges which suggests our method extraction of geometric features
of surfaces better.

Figure 15 illustrates surface reconstruction results of isotropic kernels method, anisotropic kernel method
and our method in double breaking dam experiment, this scenario employ 205082 particles. Figure 9 shows
the computation time taken by each frame of anisotropic kernel method and our method throughout the
double breaking dam experiment. As shown, we can see that the whole computation time of our method is
lower than that of anisotropic kernel method and we get 1.42 times speedup throughout the experiment.
Observed from Fig. 15, anisotropic kernel method and our approaches for constructing the surfaces are more
smooth and realistic than the isotropic kernels method, nevertheless our algorithm saves more computing
time and accesses to a larger efficiency gains than anisotropic kernel method. Figure 10 analyzes the
efficiency promotion of our approach, the red line hints the proportion of surface particles to all the particles
in each frame, the blue line represents the increasing rate of efficiency compared with anisotropic kernel
method for each frame. As it is shown in the figure, the trends of the two lines are just opposite, that is
efficiency can be greatly improved when having a small proportion of surface particles. This is fully
consistent with the expected results and the whole process acquires a 30 percent enhancement of efficiency.

Fig. 16 a The isotropic kernels method, b the anisotropic kernels method and c our method rendering comparison of double
breaking dam experiment
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Table 1 shows comparison of anisotropic kernels method and our method in double breaking dam and
fluid–rigid coupling scene. Figure 16 is the rendering comparison of three methods in double breaking dam.
The rendering pictures chosen are the same frames as in Fig. 15. In this experiment, we can find that
surfaces of water have very good realistic effects.

In addition, we test our algorithm in fluid–rigid coupling scene that also received good results. Figure 17
shows surface reconstruction results of anisotropic kernel method and our method in 1 cube fluid–rigid
coupling experiment, this scenario employs 171,941 particles. Figure 11 displays the computation time cost
by each frame of anisotropic kernel method and our method. We get 1.62 times speedup in this experiment.
Like Figs. 10 and 12 analyzes the efficiency promotion of our approach, red line hints the proportion of
surface particles to all the particles in each frame, blue line represents the increasing rate of efficiency
compared with anisotropic kernel method and this experiment acquires a 38 % enhancement of efficiency.

Fig. 17 Surface reconstruction of 1 cube fluid–rigid coupling experiment. First row is results of anisotropic kernels method;
Second row is results of our method

Fig. 18 Surface reconstruction of 16 cubes fluid–rigid coupling experiment. First row is results of anisotropic kernels method;
Second row is results of our method
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Figure 18 illustrates surface reconstruction results of anisotropic kernel method and our method in 16
cubes fluid–rigid coupling experiment, this scenario uses 272,861 particles. Figure 13 shows the compu-
tation time of anisotropic kernel method and our method. In this experiment, we get 1.65 times speedup.
Figure 14 analyzes the efficiency promotion of our approach, red line hints the proportion of surface
particles, blue line represents the increasing rate of efficiency compared with anisotropic kernel method and
this experiment acquires a 40 percent enhancement of efficiency.

6 Conclusions

An efficient anisotropic surface reconstruction algorithm for SPH fluid is proposed in this article. Primarily,
we simplify the construction of the traditional anisotropic kernel function based on geometry. Then we
divide particles into near-surface particles and internal particles according to the analysis of particles
eigenvectors. In addition, the near-surface particles are involved in calculation when processing surface
reconstruction, while the internal particles’ color field values are directly assigned by means of its number of
neighbor particles. Experimental results show that our method ensures smoothness and geometric charac-
teristics of the fluid surfaces and enhances the calculation efficiency. In the experiments described, we
received 30–40 % improvement on efficiency compared to Yu’s anisotropic kernel algorithm in 2013.
Efficiency improvements are related to the number of particles participating in the simulation. In most
scenes, internal particles increase with the total number of particles. The more the number of particles are,
the more efficiency the algorithm will gain. For that reason, the large-scale scenes can achieve higher
speedup. Future work would be extending the proposed approach to large-scale scenarios and other SPH
fluid solvers such as PCISPH or IISPH.
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