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Abstract
Image harmonization, aiming to seamlessly blend
extraneous foreground objects with background
images, is a promising and challenging task. En-
suring a synthetic image appears realistic requires
maintaining consistency in visual characteristics,
such as texture and style, across global and se-
mantic regions. In this paper, We approach im-
age harmonization as a semantic routed style trans-
fer problem, and propose an image harmonization
model by routing semantic similarity explicitly to
enhance the consistency of appearance characteris-
tics. To refine calculate the similarity between the
composed foreground and background instance, we
propose an Instance Similarity Evaluation Module
(ISEM). To harness analogous semantic informa-
tion effectively, we further introduce Style Transfer
Block (STB) to establish fine-grained foreground-
background semantic correlation. Our method has
achieved excellent experimental results on exist-
ing datasets and our model outperforms the state-
of-the-art by a margin of 0.45 dB on iHarmony4
dataset. Our code is available in github.

1 Introduction
Image editing technology is extensively utilized across var-
ious aspects of our daily lives, encompassing areas such as
commercial promotion, social sharing, digital entertainment,
and even the emerging realm of the Metaverse [Kaur et al.,
2023; Ren and Liu, 2022]. Notably, AIGC [Ho et al., 2020;
Kim et al., 2022] technology empowers the direct generation
of a diverse array of images, although many synthetic im-
ages require subsequent editing to enhance realism. However,
individuals lacking professional photo-editing expertise may
find that composited images face challenges in terms of evalu-
ation credibility, stemming from issues such as inharmonious
color, texture, or illumination. Consequently, the process
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Figure 1: Illustration of image harmonization guided by semantic
similarity. The appearance characteristics and semantic similarity of
foreground and background objects are more related. The little girl
could be related to multiple instances in the background. A stronger
influence from the left-side instance leads to a more subdued color
profile, whereas a stronger influence from the right-side instance re-
sults in a more vibrant color profile.

of image harmonization becomes imperative for elevating the
overall quality of composite images.

Numerous methods have been developed with the objec-
tive of harmonizing composite images, addressing the dis-
cordance between foreground and background [Cong et al.,
2020; Liang and Pun, 2022; Ren and Liu, 2022; Zhu et al.,
2022; Chen et al., 2022; Niu et al., 2023]. Zhu et al. [Zhu et
al., 2022] proposed a technique to align the representation of
each foreground location with corresponding background el-
ements. In a different approach, Tsai et al. [Tsai et al., 2017]
introduced an end-to-end learning method for image harmo-
nization, primarily focusing on constraining semantic infor-
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mation learning in the encoder. Cun et al. [Cun and Pun,
2020] integrated a spatial-separated attention module to com-
pel the network to learn foreground and background features
separately, but this approach falls short in ensuring style con-
sistency between the two components. However, these ex-
isting methods predominantly emphasize visual style consis-
tency between foreground and background regions, lacking
realism derived from instance similarity.

Based on the human perception process for image harmo-
nization, the appearance characteristics and semantic similar-
ity of foreground and background objects are highly relevant.
As illustrated in Figure 1, the little girl could be related to
multiple instances in the background, including the man on
the left and the woman on the right, with varying degrees
of semantic similarity, When the appearance characteristics
are influenced by semantic similarity, the resulting harmo-
nization exhibits distinct characteristics. A stronger influence
from the left-side instance leads to a more subdued color pro-
file, whereas a stronger influence from the right-side instance
results in a more vibrant color profile.

To alleviate the ambiguity derived from different semantic
information, we propose an image harmonization model by
measuring semantic similarity explicitly to enhance the con-
sistency of appearance characteristics. As the saying goes,
”who looks like me”. We approach image harmonization as a
semantic routed style transfer problem, focusing on refining
the appearance of foreground objects using the style guid-
ance of the most similar instance. Specifically, an Instance
Similarity Evaluation Module (ISEM) is designed to compute
the similarity matrices of components between the composed
foreground object and the background instances. To harness
analogous semantic information more effectively, we further
introduce the Style Transfer Block (STB). On one hand, this
module is specifically crafted to query the most akin back-
ground instance. On the other hand, corresponding style char-
acteristics are seamlessly transferred onto the composed fore-
ground object, enhancing the overall harmonization process.
Extensive experiments including human perception experi-
ments demonstrate the superior performance of our proposed
method in improving image harmonization.

In summary, our contributions are given as follows:
• We design an image harmonization framework by eval-

uating the instance-similarity
• We propose an instance similarity evaluation module

(ISEM), designed to assess the similarity of components
within both the semantic and stylistic domains of in-
stances in the foreground and background.

• We introduce a style transfer block(STB) that captures
the global style information of the input image and trans-
fers it to the latent space of the style encoder.

2 Related Work
Most early studies on image harmonization aimed to de-
sign and match low-level color statistical information of fore-
ground and background, such as color histograms [Xue et
al., 2012], gradient information [Pérez et al., 2003] and im-
age pyramids [Sunkavalli et al., 2010]. The utilization sce-
narios of these methods are significantly constrained due

to limitations in representing high-level features. Paired
images and harmonized training data [Tsai et al., 2017;
Cong et al., 2020] have been constructed by adjusting the
color and illumination of the foreground objects in real im-
ages. Based on these datasets, large numbers of image har-
monization models based on supervised deep learning mod-
els have been proposed and achieved more reliable results
using these datasets. DIH [Tsai et al., 2017] and Sofiiuk et
al. [Sofiiuk et al., 2021] use semantic information to capture
image context, which aids in harmonizing the composite fore-
ground. RainNet[Ling et al., 2021] treats the mean and vari-
ance of the deep features as appearance information and ad-
justs the mean and variance of the foreground to match those
of the background. In addition, several endeavors have at-
tempted to apply models that have achieved outstanding per-
formance in other domains, such as Transformer [Guo et al.,
2021a] and diffusion models [Lu et al., 2023; Li et al., 2023],
to address the task of image harmonization.

Furthermore, in the pursuit of context consistency, recent
notable works have approached image harmonization as a
style transfer problem [Song et al., 2023]. These endeavors
aim to precisely transfer the global features of the background
onto the composed foreground object. Hao et al. [Hao et al.,
2020] align the standard deviation of the foreground features
with that of the background features, capturing global depen-
dencies in the entire image. BargainNet [Cong et al., 2021]
uses a domain code extractor to capture background domain
information, guiding the foreground’s harmonization. Re-
cently, Hang et al. [Hang et al., 2022] has achieved state-of-
the-art results by incorporating background and foreground
style consistency constraints and dynamically sampling neg-
ative examples in a contrastive learning paradigm. These
methods leverage network models to learn the relationship
between foreground and background feature representations
implicitly.

In this paper, the background elements that exert a more
pronounced influence on the appearance characteristics of
foreground objects are concerned. We explicitly extract
the semantic relationship between the background and fore-
ground elements, and employ this information to guide and
inform the image harmonization process.

3 Methods
3.1 Overall Pipeline
The objective of our paper is to maintain consistent appear-
ance characteristics between the foreground and background
of synthetic images. Consequently, forming a substantial
association between the composite foreground instance and
other background instances is vital for crafting harmonious
appearance uniformity. As depicted in Figure 2, we initially
deploy a pre-trained SAM model to divide the synthetic im-
age into a semantic space, with the mask of the foreground
functioning as the model’s prompt. Subsequently, seman-
tic mapping takes place to transform the SAM model’s out-
put into the semantic and location data of the background
instances. We introduce the Instance Similarity Evaluation
Module (ISEM), designed to compute a similarity matrix
between the composite foreground instance and the various



Figure 2: The overall structure of the Image harmonization model. The composite image first acquires instance information based on the
SAM model and estimates the similarity matrix between instances. The harmonization model adopts an encoder-decoder structure. To build
the global relationship between the background and foreground and explicitly utilize the instance similarity matrix, we design the STB and
ISTB modules in the encoding and decoding stages, respectively.

background instances. As part of the harmonization proce-
dure, we utilize a semantic routing technique that utilizes se-
mantic similarity, which incorporates instance location and
a semantic similarity matrix to deliberately adjust the fea-
ture representations within the image. To bolster the influ-
ence of analogous semantics, we employ an encoder-decoder
network architecture. Here, the composite image is subject
to convolutional encoding and then processed through three
strata of the STB encoder. During decoding, to leverage the
semantic similarity matrix in guiding the harmonization pro-
cess, we introduce the Style Transfer Block (STB). This block
shares a similar framework with STB, with a distinction in
the attention mechanism where the Key-value matrix is mod-
ulated by the corresponding scale instance similarity matrix.
This adjustment ensures alignment with semantic similarity
and the subsequent refinement of the harmonization results.
We apply a feature transformation function to ensure feature
dimension consistency following each multiplication process.
The process is formulated as:

K ′ = Reshape(K × S) (1)

V ′ = Reshape(V × S) (2)

Where K and K ′ are the input and output feature map, same
to V and V ′, S is the same scale instance similarity metrix ob-
tained from the semantic routing module. Finally, following
the traversal of a convolutional layer, we can get the harmo-
nized image.

3.2 Instance Similarity Evaluation Module
We employ the pre-trained Segment Anything Model
(SAM) [Kirillov et al., 2023] on a comprehensive dataset
for decomposing the composite image. SAM leverages fore-
ground/background points, bounding boxes, or masks as
prompts to produce segmentation results. It incorporates
three primary components: an image encoder, a prompt en-
coder, and a mask decoder. Utilizing a pre-trained mask self-
encoder based on the Vision Transformer (ViT), SAM pro-

cesses the image into intermediary features while transform-
ing the prompts into embedding tokens. The mask decoder’s
cross-attention mechanism then enables interactions between
image features and prompt embeddings, culminating in the
generation of the mask output. This process can be expressed
as:

Fi = ϕ(Ii) (3)
Fp = ϕprompt(Mask) (4)

M̂ = ϕmdec(Fimg + Fc−mask, [Tout, Tprompt]) (5)

where Fi is the image feature, Fp is the prompt feature, M̂ is
the mask output, Tout and Tprompt are the output and prompt
embedding tokens, respectively.

To derive the semantic representation of each instance, we
initially employ the ”full image” mode of SAM for segment-
ing all possible instance targets within the image. Subse-
quently, we introduce a semantic mapping module that ascer-
tains the location and semantic details of instances, drawing
from the image embedding produced by the SAM decoder.

Specifically, following the SAM decoder, the image em-
bedding undergoes an up-sampling by a factor of 4× via two
transposed convolutional layers. The image tokens, labeled
as Eim and incorporating prompt and output tokens, engage
with the image embedding. The refreshed token embedding
is then directed through three-layer MLP (Multi-Layer Per-
ceptron) [Riedmiller and Lernen, 2014] modules to yield the
instance embedding, represented as Ein. A spatial point-wise
product is performed between the up-scaled image embed-
ding and the instance embedding to predict the position of
the instance, signified as P . This process can be expressed
as:

E′
im = conv.Trans(Eim) (6)
Tu = Attn(Eim, T ) (7)

P = E′
im ·MLP (Tu) (8)

Ein = MLP (Tu) (9)



Figure 3: The illustration of the semantic routing.

Furthermore, we use a cross-similarity module to calculate
the similarity between N instances. We use global average
pooling to generate mean query feature F̄ (Ein). Then we
copy it and make it have the same shape with the target feature
Ei

in. The cross similarity map S has the same width/height
with the number of instances detected. Mathematically, the
similarity metric can be expressed as

q = F̄ (Ein) = GAP (F (Ein)) (10)

cos(Ei
in, q) =

Ei
in

T · q
||Ei

in|| · ||q||
(11)

where cos(·) indicates the cosine similarity.

3.3 Semantic Routing
To preserve the pronounced impact of background regions
with analogous semantics on the foreground object, we in-
troduce a semantic routing strategy predicated on assessing
semantic similarity within the semantic space. As depicted
in Figure 3, the semantic similarity matrix coupled with in-
stance location data is employed to identify all feasible in-
stances. By aligning semantic information with spatial loca-
tion indices, we compute the correlation coefficient between
background instances and foreground objects, subsequently
generating a spatial importance map. In detail, the instance
index of the position embedding is denoted as i and the cor-
responding value as Si, it can be formulated as:

Si = Mj , where i = j (12)

where M is the semantic similar value from the semantic sim-
ilarity matrix.

Upon finalizing the semantic-location mapping, the seman-
tic similarity matrix is transformed into an instance similarity
matrix. This matrix not only embeds instance location infor-
mation but also encompasses correlation coefficients between
background instances and foreground targets. To align with
the Key-Value pairing mechanism in the multi-level STB, the
similarity matrix is subject to interpolation operations, which
yield a multi-scale matrix pyramid mirroring the scale struc-
ture of the STB.

3.4 Style Transfer Block
Style Transfer Block(STB) aims to integrate the spatial se-
mantic and similarity information, which involves applying
Self-Attention (SA) across channels instead of the spatial di-
mension. This enables the calculation of cross-covariance
among channels, facilitating the creation of an attention map

that innately represents the global context. We augment the
STB by integrating depth-wise convolutions as recommended
by Zamir et al. [Zamir et al., 2022], which accentuate the lo-
cal context prior to the computation of feature

From a layer-normalized tensor Y ∈ RH×W×C , our STB
initially produces query (Q), key (K), and value (V ) projec-
tions that are imbued with local contextual information. This
is accomplished by implementing 1 × 1 convolutions, which
aggregate the cross-channel context at the pixel level, fol-
lowed by 3× 3 depth-wise convolutions that encode the spa-
tial context within the channel, resulting in Q = WQ

d WQ
p Y ,

K = WK
d WK

p Y , and V = WV
d WV

p Y . Here, W (·)
p signifies

the 1 × 1 point-wise convolution, while W
(·)
d represents the

3× 3 depth-wise convolution.
Subsequently, we reconfigure the query and key projec-

tions so that the dot-product interaction between them pro-
duces a transposed-attention map A with dimensions RC×C ,
as opposed to the substantially larger standard attention map
sized RHW×HW . Overall, the STB process is defined as:

X̂ = WpAttention(Q̂, K̂, V̂ ) +X, (13)

Attention(Q̂, K̂, V̂ ) = V̂ · Softmax(K̂ · Q̂α) (14)

where X and X̂ are the input and output feature maps,
Q,K, V matrices are obtained after reshaping tensors from
the original size RH×W×C . Echoing traditional multi-head
self-attention mechanisms, we partition channel dimensions
into discrete heads, concurrently computing distinct attention
maps to learn style feature representations . For the styliza-
tion of features, a uniform feed-forward network (FN) inde-
pendently processes each pixel location. The first convolu-
tion augments feature channel capacity, typically quadrupling
it, and the second convolution restores the channel count to
match the original input dimensionality. Interposed between
these convolutions is the application of a non-linearity within
the hidden layer to facilitate complex feature transformations.

In thie work, we harness a gating mechanism and depth-
wise convolutions within the feed-forward network (FN) to
enhance representation learning. The gating mechanism is
implemented as an element-wise product of two linear trans-
formation pathways, with one pathway undergoing activation
by GELU non-linearity. Depth-wise convolutions are incor-
porated to capture information from spatially adjacent pix-
els, instrumental in learning the local imagery structure cru-
cial for effective restoration. Given an input tensor X ∈
RH×W×C , it is formulated as:

X̂ = W 0
p Gating(X) +X (15)

Gating(X) = ϕ(W 1
dW

1
p (LN(X))) ·W 2

dW
2
p (LN(X))

(16)

where (·) denotes element-wise multiplication, ϕ represents
the non-linearity, and LN is the layer normalization. Overall,
STB effectively captures the global stylistic attributes of the
input image and conveys them to the latent space of the style
encoder.
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Figure 4: Comparison with SOTA methods. Our results can obtain the similarity of instances in the background image and harmonize based
on instances with high similarity. Therefore, they are able to better eliminate interference factors in the background.

4 Experiments
4.1 Datasets
Our experiments use the iHarmony4 dataset, a publicly avail-
able synthesized dataset referenced by Cong et al. [Cong
et al., 2020], which includes four sub-datasets: HCOCO,
HAdobe5k, HFlickr, and Hday2night. These sub-datasets en-
compass synthesized composite images, foreground masks
for these images, and their corresponding real images. We
employed the same processing method as HDNet [Chen et al.,
2022] for the dataset. Additionally, to validation the perfor-
mance of our methods in real-world scenarios, we employed
100 real-world images from CDTNet [Cong et al., 2022],
which are processed in the format of the iHarmony4 dataset.

We evaluated the performance of our method using MSE,
PSNR, fMSE, as suggested by [Cong et al., 2020; Ling et
al., 2021; Niu et al., 2023], in which fMSE means MSE
within the foreground region. To illustrate performance, we
qualitatively compare our method with following harmoniza-
tion methods, including DoveNet [Cong et al., 2020], In-
trinsic [Guo et al., 2021b], Bargainnet [Cong et al., 2021],
RainNet [Ling et al., 2021], D-HT [Guo et al., 2021a], Har-
monizer [Ke et al., 2022], SCS-Co [Hang et al., 2022],
CDTNet [Cong et al., 2022], HDNet [Chen et al., 2022],
GKNet [Shen et al., 2023], and LEMaRT [Liu et al., 2023].

4.2 Implementation Details
Our model is trained by AdamW optimizer with β1 = 0.9,
β2 = 0.999, and weight decay 1e−4. We train the model for

200 epochs with input images resized to 256× 256 and batch
size set to 8. The initial learning rate is set to 3e−4 and grad-
ually reduced to 1e−6 with the cosine annealing [Loshchilov
and Hutter, 2017]. We use PyTorch to implement our models
with NVIDIA GeForce RTX 4090.

4.3 Comparison with Existing Methods
Quantitative comparison. Table 1 shows the quantitative
results of previous image harmonization methods as well as
our method. It is evident that our method surpasses the com-
parative methods across all datasets with the exception of
MSE and fMSE on HCOCO. Furthermore, when contrasted
with the second-best performing method, ours realizes a sub-
stantial average enhancement of 0.52dB in PSNR, a 0.55 re-
duction in MSE, and an improvement of 77.26 in fMSE.

Influence of fore-ground ratios. Following [Cong et al.,
2020], we examine the influence of different fore-ground ra-
tios on the harmonization models, i.e., 0% to 5%, 5% to 15%,
15% to 100%, and overall results. The comparative results
of previous methods and our method are tabulated in Table 2.
Upon scrutiny, it is evident that our method exhibits superior
performance, outperforming all other approaches.

Qualitative comparison. In Figure 4, Additionally, we
provide a qualitative comparison of results on the iHarmony4
dataset. It is readily apparent that our method secures a more
uniform visual style across the entire composite image, re-
sulting in a more photorealistic outcome. For example, as
shown in the second row of Figure 4, the visual style of the



model venue HCOCO HAdobe5k HFlickr Hday2night All
PSNR↑ MSE↓ PSNR↑ MSE↓ PSNR↑ MSE↓ PSNR↑ MSE↓ PSNR↑ MSE↓

Comp - 33.99 69.66 28.48 347.52 28.41 266.05 34.3 110.95 31.76 173.43
Dovenet CVPR’20 35.83 36.72 34.34 52.32 30.21 133.14 35.18 54.05 34.75 52.36
intrinsic CVPR’21 37.21 24.92 36.01 43.02 36.23 105.13 34.03 55.53 35.01 38.71

BargainNet ICME’21 37.03 24.84 39.94 35.34 31.34 97.32 35.67 50.98 35.88 37.82
RainNet CVPR’21 37.08 29.52 36.22 43.35 31.64 110.59 34.83 57.4 36.12 40.29
D-HT ICCV’21 38.33 16.89 36.11 38.53 33.13 75.51 37.1 53.01 37.55 30.3

Harmonizer ECCV’22 38.77 17.34 37.64 21.89 33.63 64.81 37.56 33.14 37.84 24.26
SCS-Co CVPR’22 39.88 13.58 38.29 21.01 34.22 55.83 37.83 41.75 38.75 21.33
CDTNet CVPR’22 39.15 16.25 38.24 20.62 33.55 68.61 37.95 36.72 38.23 23.75
HDNet MM’23 39.49 15.59 38.56 22.67 33.96 63.85 38.11 35.92 38.58 23.42
GKNet ICCV’23 40.32 12.95 39.97 17.84 34.45 57.58 38.47 42.76 39.53 19.90

LEMaRT CVPR’23 41.0 10.1 39.4 18.8 35.3 40.7 38.1 42.3 39.8 16.8
Ours - 40.94 12.15 40.91 14.77 35.79 48.57 39.30 27.00 40.32 17.25

Table 1: Quantitative comparison across four sub-datasets of iHarmony4. Bold and underline indicate the best and second best performance,
respectively.

model 0% ∼ 5% 5% ∼ 15% 15% ∼ 100% Average
MSE↓ fMSE↓ MSE↓ fMSE↓ MSE↓ fMSE↓ MSE↓ fMSE↓

Composite 28.51 1208.86 119.19 1323.23 577.58 1887.05 172.47 1387.30
DIH 18.92 799.17 64.23 725.86 228.86 768.89 76.77 773.18

S2AM 13.51 509.41 41.79 454.21 137.12 449.81 48.00 481.79
DoveNet 14.03 591.88 44.90 504.42 152.07 505.82 52.36 549.96
RainNet 11.66 550.38 32.05 378.69 117.41 389.80 40.29 469.60

BargainNet 10.55 450.33 32.13 359.49 109.23 353.84 37.82 405.23
Intrinsic 9.97 441.02 31.51 363.61 110.22 354.84 38.71 400.29
HDNet 5.95 230.75 20.32 265.31 68.95 318.15 23.42 258.80

ours 4.37 198.47 13.50 155.61 52.55 172.11 17.25 181.54

Table 2: We measure the error of different methods in fore-ground ratio range based on the whole test set. fMSE indicates the mean square
error of the fore-ground region. Top performance are shown in bold.

foreground and the background are quite different, resulting
in obvious image distortion. The other three methods cannot
adjust the style of the foreground, especially the overall tone
and the contrast of lighting and shadows. Unlike them, our
method produces a more photo-realistic result and is closer to
the ground-truth real image.

Overall inference time. In Table 4, we present the infer-
ence time, parameter count, and FLOPs required for harmo-
nizing a single image during testing. our approach does not
show efficiency advantages, as indicated in the last row of
Table 4, due to utilizing the pretrained SAM model for in-
stance information retrieval. Yet, when relying solely on pixel
domain architecture without ISEM, our model demonstrates
comparable inference speed, with each step taking 20.4ms
and a parameter count of 25.28M , as shown in the third row
of Table 4. In this study, we intentionally sacrificed some
speed advantages to prioritize the realism of the harmonized
images. Nonetheless, there is significant potential to enhance
both the speed and parameter count of the SAM model, a di-
rection we aim to pursue in future research.

4.4 Ablation Study
Effectiveness of each component. In this section, we in-
vestigate the effectiveness of each component in our model.

The results of ablating each component are reported in Ta-
ble 3. Our ISEM module enables assess the similarity of com-

Figure 5: Ablation study on ISEM and STB. Full model means base-
line with both ISEM and STB

ponents within both the semantic and stylistic domains of in-
stances in the foreground and background. In Table 3, we
can see that adding ISEM to the baseline brings 0.56 dB and
5.12 average performance improvement in terms of PSNR
and MSE.

The STB effectively learns global style features and ap-
plies them to foreground objects. The addition of the STB
enhances the overall coherence between foreground objects
and background images. However, it also introduces a lim-
itation in the form of excessive reliance on the background,
which limits the effectiveness of improvement. In Table 3, we
can see that adding STB to the baseline brings 0.71dB and
5.24 average performance improvement in terms of PSNR



Metric HCOCO HAdobe5k HFlickr Hday2night All
PSNR↑ MSE↓ PSNR↑ MSE↓ PSNR↑ MSE↓ PSNR↑ MSE↓ PSNR↑ MSE↓

Comp 33.99 69.66 28.48 347.52 28.41 266.05 34.3 110.95 31.76 173.43
Basic 38.65 17.10 36.02 38.42 33.25 75.68 37.76 54.12 37.87 30.10

+ISEM 39.12 16.28 38.14 20.53 33.24 68.42 38.02 36.22 38.33 24.98
+STB 39.62 15.71 38.87 23.88 34.10 65.76 38.11 35.98 38.58 23.86
Total 40.94 12.15 40.91 14.77 35.79 48.57 39.30 27.00 40.32 17.25

Table 3: Ablation study across four sub-datasets of iHarmony4, Top performance are shown in bold

Method Time(ms) Params(M) FLOPs(G)
RainNet 12.06 54.75 3.79
HDNet 15.08 10.41 48.04
CDTNet 10.8 24.36 78.05
Ours w/o ISEM 20.4 25.28 87.7
Ours 160.72 112.3 356.4

Table 4: Quantitative efficiency comparison of different methods.

and MSE.
By concurrently incorporating the ISEM and STB mod-

ules, our method effectively establishes correlations between
various components of the target object and background in-
stances, thus enhancing overall coherence. Consequently, the
improvement is significantly pronounced. In Table 3, we can
see that adding both ISEM and STB to the baseline brings
2.45 and 12.85 average performance improvement in terms
of PSNR and MSE.
Visual comparison. To further illustrate the effectiveness
of our mothods, we show some output results of ablation ex-
periments in Figure 5. It can be found that compared with the
distortion results produced by the module, the full model’s
results performe more consistent in lighting and color with
background regions.

4.5 User Study
We extend our evaluation by comparing various methods
using a dataset of 100 real composite images provided by
CDTNet [Cong et al., 2022]. To gauge the performance
against competitive baselines, we conduct a user study.
This study involves the construction of 600 image pairs, in
which we randomly select two images from each composite
image and its 3 corresponding harmonized results across the
100 real composite images. Subsequently, we allocate 60
pairs for each of the 20 participants, who are tasked with
viewing one image pair at a time and selecting the image
they perceive as more harmonious. This process generates a
total of 1200 pairwise results. Following the methodology
adopted in GiftNet [Niu et al., 2023], we computed the
Bradley-Terry(B-T) scores for all methods, as detailed in
Table 5. Notably, our approach emerges with the highest
B-T score (which is 0.413) concerning realism, underscoring
the efficacy of the method proposed in this paper. The
visualization results pertaining to real composite images are
presented in Figure 6. Compared to previous methods, our
results demonstrate enhanced realism, particularly evident
when similar instances are present in the background, as
illustrated in the first three rows. Furthermore, when there
are N(N > 0) related instances in the background, the model

Method Composite RainNet HDNet CDTNet Ours
B-T Score -0.972 0.084 0.177 0.298 0.413

Table 5: B-T scores of different methods on 100 real composite im-
ages.

Figure 6: The visualization of different methods on real composite
images.

constructs an N-dimensional similarity matrix to represent
the degree of similarity between instances. These instances
affect the foreground through weighted accumulation across
the matrix, and the foreground maintains good consistency
with the most relevant instances, such as the color of
sunflowers in the 3rd row of Figure 6. Furthermore, in the
absence of similar instances, the proposed STB and ISTB,
which can capture and transfer global color information into
the foreground, can maintain overall appearance consistency
throughout the image, as illustrated in the 4th row of Figure 6.

5 Conclusion

In this paper, we propose a image harmonization model utiliz-
ing instance similarity to maintain consistency uniformity in
global and similar regions. We propose an instance similarity
evaluation module (ISEM), which can assess the similarity of
components within both the semantic and stylistic domains of
instances in the foreground and background. We introduce a
style transfer block (STB) that captures the global style infor-
mation of the input image and transfers it to the latent space of
the style encoder. Our method has achieved excellent exper-
imental results on existing datasets and has more significant
advantages in user visual reality evaluation.
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