
Robust and customized methods for real-time hand 
gesture recognition under object-occlusion  

Abstract—Dynamic hand tracking and gesture recognition is a hard 
task since there are many joints on the fingers and each joint owns 
many degrees of freedom. Besides, object occlusion is also a thorny 
issue in finger tracking and posture recognition. Therefore, we propose 
a robust and customized system for realtime hand tracking and gesture 
recognition under occlusion environment. First, we model the angles 
between hand keypoints and encode their relative coordinate vectors, 
then we introduce GAN to generate raw discrete sequence dataset. 
Secondly we propose a time series forecasting method in the 
prediction of defined hand keypoint location. Finally, we define a 
sliding window matching method to complete gesture recognition. We 
analyze 11 kinds of typical gestures and show how to perform gesture 
recognition with the proposed method. Our work can reach state of 
the art results and contribute to build a framework to implement 
customized gesture recognition task.  

Index Terms—gesture recognition, occlusion, GANs, sequence 
prediction.  

I. INTRODUCTION  

EAL-TIME hand tracking and recognition has become an 
 

attractive topic based on that ubiquitous vision based 

sensors are well spread all over the world, and it’s especially 

important in interaction-based industrial applications, such as 

Microsoft Hololens, Apple ARKit , other applications in 

simulation robot interaction etc. Efficient hand interaction can 

ensure the natural communication between human and 

computers. Every camera can perform as a basic input sensor 

in machine perception. There have been extensive studies on 

vision based hand gesture recognition, such as [1]–[4]. These 

methods have applied in various environments with effective 

and promising results. However, many of them focused on 

kinematic pose estimation of an isolated hand. The gesture 

recognition with occlusion and finger self-occlusion have not 

been covered throughly [5]. The challenge of dynamic hand 

recognition is the identification of hand keypoints sequence. 

The most common assumption for hand identification is that a 

single hand owns 16-20 keypoints, 25-50 DOF(Degree of 

Freedom) in total [6]–[8]. Each keypoint needs to quantify the 

relationship between the current and its former state(e.g., 

coordinate,angle) in time series. Real-time gesture recognition 

in occlusion is even more difficult generally for three reasons. 

(i) Some keypoints attributes cannot be captured. This is a big 

problem for most of the model-based methods. (ii) Missing 

data. This will lead to discontinuous time sequences, and 

further complication to maintain consistency of the keypoints 

context states. (iii) Insufficient observed sequences generate 

severe time malposition to the defined gesture templates. This 

can make the hand states be classified into wrong category.  

Occlusion creates obstacles for finger detection and 

recognition. The possible solution is to supplement missing 

articulations or other keypoints in real-time 3D hand gesture 

assessment process. Many trials have done to predict missing 

data. Recently, some state-of-art research [5], [9] adopted 

joint-aware principle, considering joint pattern and mutual 

correlation. It used the local keypoints mode to formulate 

different forecasting and discriminating strategies. At the same 

time, Neural Networks [10]–[12] are widely used in most of 

their works, especially Convolutional Neural Network (CNN) 

[13], [14]. CNN can be used to effectively extract different 

features in each gesture, and quantify the relationship 

between the most relevant features and estimated hand 

postures. Besides, there are some improved algorithms based 

on CNN, such as 3DCNN, as introduced in [15], [16]. They also 

got excellent results. In addition, model-based methods are 

also proved to be very effective. Zhou Xingyi et al. [17] 

proposed a deep learning based approach. It improved greatly 

in hand tracking and gesture recognition accuracy. These 

methods can reduce the impact of occlusions in specific 

conditions.  

Although deep learning based methods have achieved 

encouraging results, their experiments are running in limited 

training datasets. A perfect training dataset is difficult to find. 

Training sets is as important as model architecture, this is 

discussed in [18]. Many studies utilized open source hand 

datasets, such as NY UHandPoseDataset, HandNet and 

Dexter1, or collected gesture data through webCam, Kinect or 

other data acquisition equipments. Using already existed 

datasets limits in pertinence in practice, it’s difficult to mark 

the labels specified for customized algorithms one by one. But 

the collection of a large group of hand gestures is a 

complicated process. In this study, we present a new structure 

based on Generative Adversarial Network (GAN) to collect a 

small portion of hand gesture data and generate more 

approximately real ones. This method can effectively speed up 

the data production and reduce time cost.  

The contributions of our paper are as follows.  

1) We propose a RNN-NN connected dataset generation 

model based on the principle of GAN. This model can 

generate approximate real discrete data efficiently.  

2) We model the angles between hand keypoints and 

encode their relative coordinate vectors according to 

kinematics, combining the probability distribution to 

complete gesture model.  
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3) We propose a time series forecasting method to predict 

missing data and define a sliding window matching 

method to capture correct keypoint sequences from 

realtime input stream.  

The paper is organized as follows. The related works includes 

current occlusion solutions and relevant methods used in this 

work are introduced in Section II. The definition of the angles 

between hand keypoints and their relative coordinate vectors 

are given in Section III. The framework and proposed methods 

are presented in Section IV. Furthermore, in Section V and VI 

we give the experimental setup and results. Finally, we 

conclude the paper in Section VII.  

II. RELATED WORK  

Data generation Some researchers have noticed the data 

problem. Markus Oberweger et al. [19] proposed a 

semiautomated method for efficiently and accurately labeling 

each frame of a hand depth video with the corresponding 3D 

articulation locations, it can spur the creation of accurate 3D 

hand poses annotations. Simon Tomas et al. [2] presented a 

multiview bootstrapping method, which used reprojected 

triangulations reflected from noisy detections as training data. 

However, typical GAN based methods used to generate 

discrete sequence data have not been well studied and applied. 

Occlusion solutions Various methods are conducted to 

reconstruct missing data or avoid data loss essentially [5], [10]– 

[12], [14]–[16]. Chiho Choi et al. [5] trained a pair of object 

oriented network and hand-oriented network using paired 

depth images to create a more informed representation. L. Ge 

et al. [13] project 3D hand points onto three orthogonal planes 

to generate heat-maps for three views. Multi-perspective 

fusion based methods can also be found in [20], [21]. These 

methods can help to maintain some hand joints data. However, 

the data is always insufficient. In those inevitable occlusion 

cases, many recent works adopted model-based approaches. I. 

Oikonomidis et al. [22] formulated an optimization problem, in 

which they combined the 26-DOF hand pose and model 

parameters of the manipulated object. Model-based principle 

contains the basis of template matching procedure in our work. 

Sequence prediction Sequence prediction is frequently used to 

make up for missing data or predict specific gesture. Typical 

methods include RNN, LSTM, as introduced in [23], [24]. 

Recently proposed recurrent convolutional network (RCN) has 

been adopted in [25]. It described a class of recurrent 

convolutional architectures which is end-to-end trainable and 

suitable for large-scale visual understanding tasks. Pavlo 

Molchanov et al. [26] employed connectionist temporal 

classification to train the network to predict class labels from 

in-progress gestures in unsegmented input streams. Further 

work combined 3DCNN with Convolutional LSTM that stated in 

[27]. Our proposed method is similar with [28]. It translates the 

3D hand and human pose prediction problem from a single 

depth map into a voxel-to-voxel prediction which uses a 3D 

voxelized grid and estimates the per-voxel likelihood for each 

keypoint. We use single depth images and perform keypoints 

prediction, the difference lies in that we model the keypoint 

coordinate vector and interaction angles, and predict the 

missing data based on previous states.  

III. MODEL REPRESENTATION  

In this section, we first decompose an isolated hand. Then 

the interaction angle model and keypoint coordinate vector 

model are established based on defined coordinate system.  

A. Hand decomposition  

As illustrated in Fig.1(a), we assume there are 20 keypoints 

in a static hand, categorized into 6 classes in total. This can be 

described as Θ = {A,B,C,D,E,F}. ClassB,C,D,E each owns 4 

keypoints, numbered as 0,1,2,3 from top to down respectively. 

ClassA owns 3 keypoints, numbered as 0,1,2. ClassF has only 

one element, denoting hand elbow.  

To determine the relative position of hand keypoints, we 

adopt three keypoints {Ψ0,Ψ1,Ψ2} to form a 3D orthogonal 

coordinate system. Here {C3,B3} are used as {Ψ1,Ψ2}. {F0} is 

used as {Ψ0}. These three keypoints are always on a plane Φ 

for most hand gestures. The line LY in which Ψ0 and Ψ1 are 

located denotes axis Y and the line LX perpendicular to LY 

within Φ denotes axis X, the line LZ through Ψ0 perpendicular 

to Φ denotes axis Z.  

B. keypoint coordinate vector model  

As shown in Fig.1(b), we take ClassE and ClassF for example.  

For a static state St, there are 4 coordinate vectors,  

  →−  →−  →−  →−  

denoting V t(E0), V t(E1), V t(E2), V t(E3). The change of one 

vector represents the performance of a particular dynamic 

gesture on this feature, shown in Eq.(1).  

    (1)  

Also, ∆ can be decomposed into features in these three 

directions, denoted in Fig.1(d). For those missing keypoints, 

the previous states are used to predict the current status based 

on proposed forecasting methods.  

C. Angle model  

Based on predefined keypoint coordinate vectors, 

interaction angles depend on three nearest neighbors. The 

→−static state S→−t, αt(E012) can be expressed by two  

vectors V t(E2E1), V t(E1E0), as in Fig.1(c).  



IV. FRAMEWORK AND METHODS  

In this section, first we present the overall framework of the 

proposed system, then introduce individual method used in it. 

Meanwhile, data processing and flow will be described.  

A. Overall Framework  

As shown in Fig.2, the overall framework contains three 

modules, data generation, sequence learning and gesture 

recognition. Data generation adopts a RNN-NN network to 

generate discrete sequences. Let Nsample represent the number 

of samples for each gesture. Generated data are stored as 

original datasets. Sequence learning uses Gated Recurrent Unit 

(GRU) to perform feature extraction and status prediction. 

Obtained sequence features are saved as gesture model after 

several steps of optimized processing. Gesture recognition  

and judge the current gesture state using joint probability 

distribution.  



B. Vector Encoder  



Due to the spatial diversity of human hands(e.g. distance to 

the camera, hand size), pixel distance cannot be used directly   

  

Fig. 1. Isolated hand decomposition. (a) 6 kinds of classifications of hand keypoints, with 3D spacial orthogonal coordinate system definition. (b) Intersection 
angles. (c) Keypoint coordinate vector. (d) Displacement decomposition.  

  

Fig. 2. Overall framework of the proposed system, including (1) Data generation, (2) Sequence learning, (3) Gesture recognition.  

obtain  the  estimated  gesture  probability  distribution   

respectively. Finally, we fuse these two types of probabilities,  Fig. 3. (a)-(g) Keypoint extraction and vector encoding. (h)-(i) Distance and 

confidence distribution heatmap.  

shows how to recognize hand gestures from real-time depth to define the training data. Therefore we put forward a input 

stream with occlusions.  

First, non-holonomic coordinate vectors and angles due to occlusions are extracted, undetected angle sequences are directly 

predicted using learned sequence characteristics, while the coordinate vectors are encoded into three orthogonal components 

to perform prediction. Next a sliding window is called to intercept corresponding gesture segments. We fit the segmented data 

to the derived model in order to  



vector encoder to transform pixel distances into scale invariant 

discrete scalars. The encoder has two functions.  

• Find the gravity center of the palm Hcenter, we assume the 

length from the elbow F0 to Hcenter as the baseline length 

Γbaseline. Hcenter can be derived using Eq.(2).  

 Hcenter = argmax(argmin|p − q|Euc)  (2) p p,q  

We use a RGB skin detector to extract hand area then 

perform binaryzation, p denotes point on the ROI(region 

of interest) and q denotes point on the background. Set 

the minimum Euclidean distance from p to q as a 

temporary value of p, while the p owning the maximum 

value represents Hcenter.  

• Normalize all of the pixel distances using the ratio to 

derived Γbaseline. Therefore, vectors can be encoded into 

three discrete values and the consistency is maintained.  

Detailed process is shown in Fig.3. we perform on 4 kinds of 

typical hand gestures. Here (a) denotes original hand color map, 

while (b), (c)-(g) are conducted under RGBA map and depth 

map respectively. The red point in (b) expresses the gravity 

center Hcenter and the red circle expresses the size of palm. The 

minimum distance of p to q corresponding to a certain RGBA 

value is defined, as shown in Fig.3(a). The distance distribution 

of p could be observed intuitively in gradient color diagram (b), 

which is vital in vector composition. (c) shows extracted hand 

contour from depth map. We set a threshold and segment 

several prospect regions Rpros in (d). As for points on Rpros, their 

encoded distances to the background depend on the size of 

Rpros. To obtain hand keypoints position, we perform 

binaryzation on (d) and get connected domain.  

Take the center of each connected region Rpros with relative 

position of Hcenter as the coordinate vector of region Rpros, 

shown in Fig. 3(g). However, not all pre-defined keypoints could 

be extracted. For those prospect keypoints, we have a high 

confidence on their positions, while a relatively lower 

confidence on the other keypoints which cannot be segmented 

directly. Here we introduce a simple hand skeletal framework 

to roughly quantify the confidence (spans [0,1]) of the keypoint 

coordinates. This confidence represents the proportion of this 

keypoint in sequence prediction. The fitting process is very 

simple, assign the coordinates of the points in the extracted 

prospect regions to corresponding points in the skeleton. 

Typical distribution is illustrated in Fig.3(i).  

As shown in Fig.3(i), the points on the prospect regions own 

1.0 confidence. The value decreases with the distance from the 

foreground, because the uncertainty of a keypoint’s position is 

positive correlated to the distance from the prospect regions. 

Derived baseline Γbaseline maintains good scalability, since all 

Euclidean distances wouldn’t exceed 4 times of Γbaseline. 

Therefore confidence Conf can be calculated using Eq.(3).  

  Conf = 1 − DEuc/(4 ∗ Γbaseline)  (3)  

Where DEuc denotes the minimum Euclidean distance of a 

keypoint to prospect region in the same class. Since those 

occluded keypoints’ coordinate could be approximately 

estimated using skeleton framework, we set their Conf initially 

as 0. It has to be adjusted according to the sequence prediction.  

  

Fig. 4. 4 adjacent keypoint state sequences.  

C. Generate data  

Our proposed GAN module employs RNN as the generative 

model and a one-layer neural network as the discriminative 

model. RNN is promising in generating contextsensitive 

sequences, and NN is also effective in classification. Kinect 

provides real-time RGBD data of M frames per second. We 

collect N segment data per gesture as initial samples. 

Therefore, each gesture can be expressed using CN{SM{Θ,∆α}} 

or CN{SM{Θ,∆Vx,∆Vy,∆Vz}}  

→−  

encoded from CN{SM{Θ,∆V }}. C denotes collection state. Initial 

samples are used as ground truth data. As for generative 

network, we employ two random noises Noiα, Noiv for angle 

based model and vector based model respectively according to 

different state step length. Input noise variables are shown as 

Eq.(4).  

  Noiα  

(4) Noiv  

Where rand(±a) denotes a uniform distributed random real 

number between −a and a. We set 5 for Noiα and 1 for Noiv in 

this paper. But they can be customized according to different 



conditions. Based on general GAN framework, generator can 

be optimized by minimizing Eq.(5) and discriminator can be 

optimized by maximizing Eq.(6).  

  Eλ∼pλ(λ)[log(1 − D(G(λ)))]  (5)  

Ex∼pdata(x)[log(D(x))] + Eλ∼pλ(λ)[log(1 − D(G(λ)))] (6) p(λ) is a 

prior distribution of λ, generator G(λ) maps from the space of 

λ to the space of data x. D(·) is the discriminator with a [0,1] 

output. The generated discrete data are stored as training sets.  

Fig.4 shows 4 adjacent keypoint state sequences, each 

contains 40 groups of coordinate data selected from the 

generated set. As we can see, the position distribution of the 

fingertips and the elbow is relatively concentrated, while the 

other keypoints distribute in scattering. There are two main 

reasons for this result. First, the fingertips and the elbow own 

high position confidence, while the others not. Second, GAN 

generates data close to real distribution, coordinate error will 

not be reduced.  

D. Sequence Learning  

As for raw datasets, a gesture contains Mx14(14 ∆α) and 

Mx19x3(19 ∆v and 3 components). Each variable has its own 

state shift mode in M frames. Nevertheless, variables of other 

classes are also related to the estimated state one, especially 

those in the same class. In order to quantify this relationship, 

we define some assumptions. First, the variables not in the 

same class(e.g.∆E0 and ∆F0) has no effect on prediction. 

Second, the variables that owns the same class and same state 

have an IF (influence factor) of 0.5. Third, the variables in the 

same class but different states have an sum average IF as 0.5. 

Let β denote IF, β0 denote IF of the main stem, then we train 

the network using Eq.(7)-Eq.(11).  

zt = σ(Wz · [ht−1,xt(Θj,i)])  (7)  

rt = σ(Wr · [ht−1,xt(Θj,i)])  (8)  

h˜t = tanh(Wh˜ · [rt ∗ ht−1,xt(Θj,i)])  (9)  

ht = (1 − zt) ∗ ht−1 + zt ∗ h˜t  (10)  

yt(Θj,0) = σ(W0 ∗ βi ∗ yt(Θj,i))  (11)  

Eq.(7)-Eq.(10) are general GRU network. zt,rt,h˜
t,ht denote 

update gate, reset gate, candidate activation and activation 

layer respectively. Θj,i denotes the ith keypoint in the jth class of 

Θ, and β0 = 0.5 when i = 0.  

Based on the trained sequence prediction model, a missing 

keypoint at a certain state can be estimated by several of its 

previous states, and some states of other keypoints in the same 

class, as illustrated in Eq.(12).  

 Smissing = X βi · Model(Si)  (12)  
len(Θj)  

Here βi denotes weighted influence factor, and the state S 

includes discrete coordinates and angles.  

E. Normalize gesture sequence  

We assume that a complete gesture contains 30 frames. 

However, it’s very difficult to finish a gesture exactly using only 

one second. Indefinite-length actual gesture sequence cannot 

perform gesture recognition because each frame is not a 

oneto-one correspondence. Here we propose a method based 

on the longest common substring to normalize actual gesture 

sequences. First we encode coordinator vector and angle into 

specific categories, we adopt 0.2 for coordinator vector and 20 

degree as step length. For example, if a keypoint owns 

(0.18,1.06,0.92) and (144◦), it will be encoded as (Av,Fv,Ev) 

and (Ha). The whole encoding relationship is shown in Table I. 

The first and forth line denote the range of  
TABLE I ENCODING RELATIONSHIP  

0∼0.2  0.2∼0.4  0.4∼0.6  0.6∼0.8  0.8∼1.0  

0∼20◦  20∼40◦  40∼60◦  60∼80◦  80∼100◦  

A  B  C  D  E  

1.0∼1.2  1.2∼1.4  1.4∼1.6  1.6∼1.8  1.8∼2.0  

100∼120◦  120∼140◦  140∼160◦  160∼180◦  180∼200◦  

F  G  H  I  J  

coordinator vector. The second and fifth line denote the range 

of angles, the third and sixth line are encoded categories. All of 

the experiment data are within the maximum value we settle, 

which can ensure no invalid encoding definition.  

  

Fig. 5. Longest common substring normalization.  

There are mainly three types of cases, actual gesture 

contains fewer frames, same frames and more frames than 

template. As for the same frame cases, we can use the frames 

data directly. As for the other two cases, we normalize the 

sequence using proposed method shown in Fig.5. When a 

gesture is performed slowly and contains more frames, 

captured realtime sequence shows like ”More frames”. 

First ”A”,”B”,”B” in the template can find corresponding unit in 

the ”More frames”. But ”D” cannot hit a corresponding ”D” in 

the same position. Then we try to hit ”D” in the last recorded 

index of ”More frames”, shift to the next position until the hit 

is successful and we record this hit index. As for ”G”, it can’t hit 

success in the same position either. The current recorded index 

is ”D”, so shift to the next position until ”G” can hit success. 

When a gesture contains fewer frames, typical example shows 

like ”Few frames”. As for the second ”B” in the template, it 

cannot hit success, so hit the last recorded index and succeed. 



In this case, insert a new ”B” in the corresponding position. As 

for ”G”, it does not exist in the captured sequence, insert a new 

element in the same position and the element is the last 

recorded element. Traverse the template according to this rule 

and we can get output like ”ABBDGEF...CD” 

and ”ABBDDEF...CD”, it is different with these two outputs. 

Even though, normalized sequences are much more similar to 

the templates compared to captured real-time sequence.  

F. Dynamic matching and gesture recognition  

Matrix sequence could be completed using trained 

prediction model. However, current state and its last M − 1 

states cannot be used to perform gesture recognition since 

they may belong to two different gestures. Here we propose a 

sliding window method to match candidate sequence with the 

defined gesture templates dynamically. First, we catch 1.5M 

frames of data and set that more than 0.5M frames are 

required to 1: Initialize cursor=-M, error E, mean error ME, map  

V  

2: repeat  

 
N 3:  

6: Searching templates for corresponding gesture of the 

minimum value ME, push them into V , let cursor++  

7: until cursor=0  

8: Define relative error RE, iterate through V  

9: , calculate the relative error under two  

strategies(coordinate and angle), the gesture owning the 

minimum value is identified as current gesture  

  

Here Ndim denotes the dimension of a frame, and values 19x3 

for coordinate vector and 14 for angle respectively. Confi,j 

denotes the confidence of jth sub-state in the ith frame as 

mentioned in Sec.IV-B. cursor denotes a supplementary 

variable, varying from −M to 0, ensuring more than 0.5M 

frames of data are used to recognize hand gestures.  

The process stores the past 1.5M frames of raw data relative 

to current state, then traverse cursor from −M to 0. This is the 

kernel of this sliding method. As for each state, we use the 

minimum average Euclidean distance between K raw data and 

last K states of gesture templates to represent mean error, and 

save the minimum mean error and the corresponding gestures. 

Two groups of error data can be obtained at the end of the 

traversal. In order to maintain the judgment consistency under 

coordinate and angle group, we calculate the proportion of 

each absolute mean error in the total error. Find the minimum 

relative error, its corresponding gesture denotes the current 

destination gesture.  

V. EXPERIMENT  

In this section, we give an example to apply our method, and 

introduce the detailed experiment setup.  

A. Experimental Design  

As we mention in the Sec.IV, there are some undetermined 

parameters, here we set M=30, Ndim=19x3 for coordinate and 

=14 for angle, Nsample = 50.  

B. Experiment setup  

As illustrated in Fig.6, we define 11 types of representative 

hand gestures, which covers typical finger characteristics. Fig. 6. 

Defined 11 kinds of representative hand gestures..  

  

Fig. 7. Real-time gesture recognition results.(a)hold,(b)swipe right,(c)rotate 
left,(d)click.  



First, we collect 50 samples for each gesture, extract 

coordinate vectors and angles as raw dataset, then use two 

defined GANs to generate 5 × 103 samples respectively as 

training set. The preprocessing phase includes keypoint 

information extraction and discrete data generation, while the 

sequence learning part includes discrete state sequence 

learning and model optimization. The model training process 

to coordinate vector and angle are in parallel. We use a 

GPU(NVIDIA GTX1050) to accelerate real-time RGB and depth 

data calculation, to ensure 30FPS.  

VI. RESULT  

In this section, we present experiment results, including 

recognition accuracy under different conditions, comparison 

with other recent methods, to show superiority of our 

proposed method.  

A. Real-time gesture recognition result  

As shown in Fig.7, we give 4 typical gesture recognition 

results, (a)-(d) represent hold, swipe right, rotate left and click 

corresponding category. Update the center of each categories 

and repeat until all sequences are traversed. Detailed 

algorithm is shown in Algorithm.2. Compared to the red 

histogram in Fig.8, we can see that dataset is much more 

accurate after validation.  

Algorithm 2 Validation algorithm  

Require: Raw dataset  

Ensure: Validated dataset  

1: repeat  

approach.  

respectively.  

B. Dataset validation  

As shown in Fig.8, raw generated dataset is not ideal to train 

sequence model, the error of the dataset will accumulate to 

  

Fig. 9.  Recognition accuracy of three typical hand gestures under different actual frames, a)Coordinator-only approach, b)Angle-only approach, c)Joint  

  

Fig. 8. Dataset validation of defined gestures.   

2:   Initialize 11 center clusters  C i   

3:   Take one record sequence  Seq cand.  and calculate distances  

to  C i , update  Seq cand.  to corresponding category of the  

minimum distance   

4:   Update 11 center clusters  C i   

  5: until  All record sequences are traversed   

  

C. Self - Comparison   

1)   Non - Normalization vs Normalization:  First we try with  

non - normalization approach. We assume that a hand gesture  

is composed of  30   frames and implement our method strictly  

based on  30   frames of data. However, actual hand gestures  



the following steps. Especially for ”pick” and ”rotate left”. The 

validation percentage is very low. To solve this problem and 

validate our dataset, we adopt KNN to validate incorrect data. 

First we find the center of each gesture dataset in the high 

dimensional space. Then assuming one sequence Seqcand. 

belongs to ClassA and the distance to the center is Seqcand.,A, we 

calculate it’s all Euclidean distances Seqcand.,class to the center of 

other classes. If Seqcand.,class ≤ Seqcand.,A, then label Seqcand. to 

usually vary for different environments. In this case, if a 

gesture is very fast completed and has Nless(< M) frames, we 

assume no hand movements in residual data(M − Nless). These 

residual data are very close to 0 and have no function on 

gesture recognition. Therefore, we can map Nless frames to 30 

to satisfy template matching using interpolating function. This 

alternative way is inevitable to bring some errors due to 

interpolating. If a gesture is performed slowly and has Nmore(> 

M) frames, we can only capture part of the gesture data due 

to that we have no prior knowledge to know when the gesture 

ends. So, we use incomplete data to perform gesture 

recognition.  

As shown in Fig.9, actual frames of a gesture denote the 

frame number when a gesture is completed. Here we 

take ”push”, ”hold” and ”rotate left” for example, each gesture 

is performed under coordinator-only mode, angle-only mode 

and joint mode, traversing 21-35 frames. We can see that the 

region with the highest precision is concentrated in the 30±1 

frames, typically 30 frame owns the peak recognition accuracy. 

Besides, the influence of few frames on recognition accuracy 

is smaller than more frames.  

Then we use normalization approach, the result is shown in 

Fig. 9. We can see that normalized gesture sequence has 

higher recognition accuracy than non-normalized. Besides, our 

proposed method performs much better on ”More frames”. 

There is no obvious decline in accuracy when actual frames are 

more than 30.  

2) Occluded frame number: Occluded frame number is an 

important influence factor in gesture recognition, the ideal 

state is that all of the gesture frames can be captured. However, 

occlusion cannot be avoided in practical situations. As we 

settle in proposed dynamic matching method, least number 

required to perform gesture recognition should be more than 

15 frames. Therefore, we observe the change of accuracy rate 

with 0 − 15 frames of data occlusion.  

gesture while there is a cup (we use cup as occlusion object in 

this experiment) in the line-of-sight between the Kinect sensor 

and hands. Besides, we control the distance between the cup 

and the hands to ensure that there are more than 15 valid 

frames for each gesture. In this experiment, we don’t record 

how many valid frames per movement, but just record the 

number of correctly identified. This is taken as average 

recognition accuracy.  



As shown in Fig.10(a), the experiment is performed on ”push”  

gesture  based  on  joint  recognition  approach  after   

normalization. We can find that with the increase of occlusion 

frames, the gesture recognition accuracy drops much faster. 

When it’s over 15 frames, we stop recognizing gestures due to 

insufficient information. The other gestures owns a similar 

trend of accuracy change. Our method has better performance 

and robustness in low occlusion environment but also works in 

some high occlusion cases.  

To validate the performance of our proposed method in  

We compare our approach with DeepPrior [29] and M. M. et 

al. [11] in recognition accuracy and time efficiency. These two 

methods got promising results under occlusion. DeepPrior 

used Convolutional Neural Network approach and M. M. et al. 

used joint model-based and data-driven approach. But they 

are both designed for static gesture recognition. In order to 

compare the performance of dynamic gestures under the 

same conditions, we capture 30 frames of static data and form  

D. Comparison with related methods  

defined dynamic gestures. As for each captured keypoints  

  

Fig. 10. (a) Recognition accuracy under different number frames of occlusion. (b) Average recognition accuracy of each gesture in 100 times.  

occluded environment, we repeat 100 movements for each  sequence, we calculate its 3D Euclidean distances to 11  



As shown in Fig.10(b), we notice that except ”hold”,”rotate 

left” and ”rotate right”, the other gestures can reach an high 

accuracy over 90%, and the four gestures also have an 

acceptable accuracy over 85%. This division may be caused by 

that each gesture depends on different keypoints and their 

corresponding number, some keypoints are easy to capture. 

For example, as for ”click”, it’s highly dependent on the index 

finger, and the index finger is independent from the other 

keypoints and won’t cause much errors. As for ”rotate 

left/right”, all keypoints are involved in gesture recognition and 

occupy a similar proportion. Some keypoints of data loss due 

to occlusion will bring more errors.   



templates. Its category is determined by the minimum 

distance. we calculate and compare the average of the 

minimum distances of each gesture.  

As illustrated in Fig.11(i), DeepPrior owns the largest 

average distances. This means it has the lowest accuracy. The 

reason could be that it does not have generalization on the 

diversity of gestures, especially on dynamic gestures. M. M. et 

al. is better than DeepPrior but still worse at sequence 

recognition. Also, since we supplement missing data and 

perform sequence normalization, actually we do not 

necessarily use 30 frames to identify a gesture. As shown in 

Fig.11. (ii), our approach is much better than DeepPrior and M. 

M. et al..  

VII. CONCLUSION  

In this study, we propose a robust customized method for 

real-time hand tracking and gesture recognition with occlusion, 

which is very useful in practical interaction-based industrial 

applications. First, we analyze the hand kinematics and 

generate a key-point based representative model with relative 

coordinate vectors. Next, for deficient labeled data with 

occlusion, we introduce GAN to create a complete raw discrete 

sequence of hand movements. Furthermore, we build a time 

series prediction method in order to estimate the locations of 

key points on hands. At last, a sliding window matching 

method is applied to recognize hand gesture. In our 

experiment, our proposed method has higher recognition 

accuracy and less time cost than DeepPrior and M. Madadi et 

al.. Also, our method only needs less data to define and 

recognize a defined hand gesture. This solves the problem of 

insufficient data from practice.  

It remains some improvements we can do in the future work. 

We will focus on more accurate extraction of key points, this 

will help improve the generated datasets greatly.  
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