
Robust and customized methods for real-time hand
gesture recognition under object-occlusion

Abstract—Dynamic hand tracking and gesture recognition is a hard
task since there are many joints on the fingers and each joint owns
many degrees of freedom. Besides, object occlusion is also a thorny
issue in finger tracking and posture recognition. Therefore, we propose
a robust and customized system for realtime hand tracking and gesture
recognition under occlusion environment. First, we model the angles
between hand keypoints and encode their relative coordinate vectors,
then we introduce GAN to generate raw discrete sequence dataset.
Secondly we propose a time series forecasting method in the
prediction of defined hand keypoint location. Finally, we define a
sliding window matching method to complete gesture recognition. We
analyze 11 kinds of typical gestures and show how to perform gesture
recognition with the proposed method. Our work can reach state of
the art results and contribute to build a framework to implement
customized gesture recognition task.

Index Terms—gesture recognition, occlusion, GANs, sequence
prediction.

I. INTRODUCTION

EAL-TIME hand tracking and recognition has become an

attractive topic based on that ubiquitous vision based

sensors are well spread all over the world, and it’s especially

important in interaction-based industrial applications, such as

Microsoft Hololens, Apple ARKit , other applications in

simulation robot interaction etc. Efficient hand interaction can

ensure the natural communication between human and

computers. Every camera can perform as a basic input sensor

in machine perception. There have been extensive studies on

vision based hand gesture recognition, such as [1]–[4]. These

methods have applied in various environments with effective

and promising results. However, many of them focused on

kinematic pose estimation of an isolated hand. The gesture

recognition with occlusion and finger self-occlusion have not

been covered throughly [5]. The challenge of dynamic hand

recognition is the identification of hand keypoints sequence.

The most common assumption for hand identification is that a

single hand owns 16-20 keypoints, 25-50 DOF(Degree of

Freedom) in total [6]–[8]. Each keypoint needs to quantify the

relationship between the current and its former state(e.g.,

coordinate,angle) in time series. Real-time gesture recognition

in occlusion is even more difficult generally for three reasons.

(i) Some keypoints attributes cannot be captured. This is a big

problem for most of the model-based methods. (ii) Missing

data. This will lead to discontinuous time sequences, and

further complication to maintain consistency of the keypoints

context states. (iii) Insufficient observed sequences generate

severe time malposition to the defined gesture templates. This

can make the hand states be classified into wrong category.

Occlusion creates obstacles for finger detection and

recognition. The possible solution is to supplement missing

articulations or other keypoints in real-time 3D hand gesture

assessment process. Many trials have done to predict missing

data. Recently, some state-of-art research [5], [9] adopted

joint-aware principle, considering joint pattern and mutual

correlation. It used the local keypoints mode to formulate

different forecasting and discriminating strategies. At the same

time, Neural Networks [10]–[12] are widely used in most of

their works, especially Convolutional Neural Network (CNN)

[13], [14]. CNN can be used to effectively extract different

features in each gesture, and quantify the relationship

between the most relevant features and estimated hand

postures. Besides, there are some improved algorithms based

on CNN, such as 3DCNN, as introduced in [15], [16]. They also

got excellent results. In addition, model-based methods are

also proved to be very effective. Zhou Xingyi et al. [17]

proposed a deep learning based approach. It improved greatly

in hand tracking and gesture recognition accuracy. These

methods can reduce the impact of occlusions in specific

conditions.

Although deep learning based methods have achieved

encouraging results, their experiments are running in limited

training datasets. A perfect training dataset is difficult to find.

Training sets is as important as model architecture, this is

discussed in [18]. Many studies utilized open source hand

datasets, such as NY UHandPoseDataset, HandNet and

Dexter1, or collected gesture data through webCam, Kinect or

other data acquisition equipments. Using already existed

datasets limits in pertinence in practice, it’s difficult to mark

the labels specified for customized algorithms one by one. But

the collection of a large group of hand gestures is a

complicated process. In this study, we present a new structure

based on Generative Adversarial Network (GAN) to collect a

small portion of hand gesture data and generate more

approximately real ones. This method can effectively speed up

the data production and reduce time cost.

The contributions of our paper are as follows.

1) We propose a RNN-NN connected dataset generation

model based on the principle of GAN. This model can

generate approximate real discrete data efficiently.

2) We model the angles between hand keypoints and

encode their relative coordinate vectors according to

kinematics, combining the probability distribution to

complete gesture model.

R

3) We propose a time series forecasting method to predict

missing data and define a sliding window matching

method to capture correct keypoint sequences from

realtime input stream.

The paper is organized as follows. The related works includes

current occlusion solutions and relevant methods used in this

work are introduced in Section II. The definition of the angles

between hand keypoints and their relative coordinate vectors

are given in Section III. The framework and proposed methods

are presented in Section IV. Furthermore, in Section V and VI

we give the experimental setup and results. Finally, we

conclude the paper in Section VII.

II. RELATED WORK

Data generation Some researchers have noticed the data

problem. Markus Oberweger et al. [19] proposed a

semiautomated method for efficiently and accurately labeling

each frame of a hand depth video with the corresponding 3D

articulation locations, it can spur the creation of accurate 3D

hand poses annotations. Simon Tomas et al. [2] presented a

multiview bootstrapping method, which used reprojected

triangulations reflected from noisy detections as training data.

However, typical GAN based methods used to generate

discrete sequence data have not been well studied and applied.

Occlusion solutions Various methods are conducted to

reconstruct missing data or avoid data loss essentially [5], [10]–

[12], [14]–[16]. Chiho Choi et al. [5] trained a pair of object

oriented network and hand-oriented network using paired

depth images to create a more informed representation. L. Ge

et al. [13] project 3D hand points onto three orthogonal planes

to generate heat-maps for three views. Multi-perspective

fusion based methods can also be found in [20], [21]. These

methods can help to maintain some hand joints data. However,

the data is always insufficient. In those inevitable occlusion

cases, many recent works adopted model-based approaches. I.

Oikonomidis et al. [22] formulated an optimization problem, in

which they combined the 26-DOF hand pose and model

parameters of the manipulated object. Model-based principle

contains the basis of template matching procedure in our work.

Sequence prediction Sequence prediction is frequently used to

make up for missing data or predict specific gesture. Typical

methods include RNN, LSTM, as introduced in [23], [24].

Recently proposed recurrent convolutional network (RCN) has

been adopted in [25]. It described a class of recurrent

convolutional architectures which is end-to-end trainable and

suitable for large-scale visual understanding tasks. Pavlo

Molchanov et al. [26] employed connectionist temporal

classification to train the network to predict class labels from

in-progress gestures in unsegmented input streams. Further

work combined 3DCNN with Convolutional LSTM that stated in

[27]. Our proposed method is similar with [28]. It translates the

3D hand and human pose prediction problem from a single

depth map into a voxel-to-voxel prediction which uses a 3D

voxelized grid and estimates the per-voxel likelihood for each

keypoint. We use single depth images and perform keypoints

prediction, the difference lies in that we model the keypoint

coordinate vector and interaction angles, and predict the

missing data based on previous states.

III. MODEL REPRESENTATION

In this section, we first decompose an isolated hand. Then

the interaction angle model and keypoint coordinate vector

model are established based on defined coordinate system.

A. Hand decomposition

As illustrated in Fig.1(a), we assume there are 20 keypoints

in a static hand, categorized into 6 classes in total. This can be

described as Θ = {A,B,C,D,E,F}. ClassB,C,D,E each owns 4

keypoints, numbered as 0,1,2,3 from top to down respectively.

ClassA owns 3 keypoints, numbered as 0,1,2. ClassF has only

one element, denoting hand elbow.

To determine the relative position of hand keypoints, we

adopt three keypoints {Ψ0,Ψ1,Ψ2} to form a 3D orthogonal

coordinate system. Here {C3,B3} are used as {Ψ1,Ψ2}. {F0} is

used as {Ψ0}. These three keypoints are always on a plane Φ

for most hand gestures. The line LY in which Ψ0 and Ψ1 are

located denotes axis Y and the line LX perpendicular to LY

within Φ denotes axis X, the line LZ through Ψ0 perpendicular

to Φ denotes axis Z.

B. keypoint coordinate vector model

As shown in Fig.1(b), we take ClassE and ClassF for example.

For a static state St, there are 4 coordinate vectors,

 →− →− →− →−

denoting V t(E0), V t(E1), V t(E2), V t(E3). The change of one

vector represents the performance of a particular dynamic

gesture on this feature, shown in Eq.(1).

 (1)

Also, ∆ can be decomposed into features in these three

directions, denoted in Fig.1(d). For those missing keypoints,

the previous states are used to predict the current status based

on proposed forecasting methods.

C. Angle model

Based on predefined keypoint coordinate vectors,

interaction angles depend on three nearest neighbors. The

→−static state S→−t, αt(E012) can be expressed by two

vectors V t(E2E1), V t(E1E0), as in Fig.1(c).

IV. FRAMEWORK AND METHODS

In this section, first we present the overall framework of the

proposed system, then introduce individual method used in it.

Meanwhile, data processing and flow will be described.

A. Overall Framework

As shown in Fig.2, the overall framework contains three

modules, data generation, sequence learning and gesture

recognition. Data generation adopts a RNN-NN network to

generate discrete sequences. Let Nsample represent the number

of samples for each gesture. Generated data are stored as

original datasets. Sequence learning uses Gated Recurrent Unit

(GRU) to perform feature extraction and status prediction.

Obtained sequence features are saved as gesture model after

several steps of optimized processing. Gesture recognition

and judge the current gesture state using joint probability

distribution.

B. Vector Encoder

Due to the spatial diversity of human hands(e.g. distance to

the camera, hand size), pixel distance cannot be used directly

Fig. 1. Isolated hand decomposition. (a) 6 kinds of classifications of hand keypoints, with 3D spacial orthogonal coordinate system definition. (b) Intersection
angles. (c) Keypoint coordinate vector. (d) Displacement decomposition.

Fig. 2. Overall framework of the proposed system, including (1) Data generation, (2) Sequence learning, (3) Gesture recognition.

obtain the estimated gesture probability distribution

respectively. Finally, we fuse these two types of probabilities, Fig. 3. (a)-(g) Keypoint extraction and vector encoding. (h)-(i) Distance and

confidence distribution heatmap.

shows how to recognize hand gestures from real-time depth to define the training data. Therefore we put forward a input

stream with occlusions.

First, non-holonomic coordinate vectors and angles due to occlusions are extracted, undetected angle sequences are directly

predicted using learned sequence characteristics, while the coordinate vectors are encoded into three orthogonal components

to perform prediction. Next a sliding window is called to intercept corresponding gesture segments. We fit the segmented data

to the derived model in order to

vector encoder to transform pixel distances into scale invariant

discrete scalars. The encoder has two functions.

• Find the gravity center of the palm Hcenter, we assume the

length from the elbow F0 to Hcenter as the baseline length

Γbaseline. Hcenter can be derived using Eq.(2).

 Hcenter = argmax(argmin|p − q|Euc) (2) p p,q

We use a RGB skin detector to extract hand area then

perform binaryzation, p denotes point on the ROI(region

of interest) and q denotes point on the background. Set

the minimum Euclidean distance from p to q as a

temporary value of p, while the p owning the maximum

value represents Hcenter.

• Normalize all of the pixel distances using the ratio to

derived Γbaseline. Therefore, vectors can be encoded into

three discrete values and the consistency is maintained.

Detailed process is shown in Fig.3. we perform on 4 kinds of

typical hand gestures. Here (a) denotes original hand color map,

while (b), (c)-(g) are conducted under RGBA map and depth

map respectively. The red point in (b) expresses the gravity

center Hcenter and the red circle expresses the size of palm. The

minimum distance of p to q corresponding to a certain RGBA

value is defined, as shown in Fig.3(a). The distance distribution

of p could be observed intuitively in gradient color diagram (b),

which is vital in vector composition. (c) shows extracted hand

contour from depth map. We set a threshold and segment

several prospect regions Rpros in (d). As for points on Rpros, their

encoded distances to the background depend on the size of

Rpros. To obtain hand keypoints position, we perform

binaryzation on (d) and get connected domain.

Take the center of each connected region Rpros with relative

position of Hcenter as the coordinate vector of region Rpros,

shown in Fig. 3(g). However, not all pre-defined keypoints could

be extracted. For those prospect keypoints, we have a high

confidence on their positions, while a relatively lower

confidence on the other keypoints which cannot be segmented

directly. Here we introduce a simple hand skeletal framework

to roughly quantify the confidence (spans [0,1]) of the keypoint

coordinates. This confidence represents the proportion of this

keypoint in sequence prediction. The fitting process is very

simple, assign the coordinates of the points in the extracted

prospect regions to corresponding points in the skeleton.

Typical distribution is illustrated in Fig.3(i).

As shown in Fig.3(i), the points on the prospect regions own

1.0 confidence. The value decreases with the distance from the

foreground, because the uncertainty of a keypoint’s position is

positive correlated to the distance from the prospect regions.

Derived baseline Γbaseline maintains good scalability, since all

Euclidean distances wouldn’t exceed 4 times of Γbaseline.

Therefore confidence Conf can be calculated using Eq.(3).

 Conf = 1 − DEuc/(4 ∗ Γbaseline) (3)

Where DEuc denotes the minimum Euclidean distance of a

keypoint to prospect region in the same class. Since those

occluded keypoints’ coordinate could be approximately

estimated using skeleton framework, we set their Conf initially

as 0. It has to be adjusted according to the sequence prediction.

Fig. 4. 4 adjacent keypoint state sequences.

C. Generate data

Our proposed GAN module employs RNN as the generative

model and a one-layer neural network as the discriminative

model. RNN is promising in generating contextsensitive

sequences, and NN is also effective in classification. Kinect

provides real-time RGBD data of M frames per second. We

collect N segment data per gesture as initial samples.

Therefore, each gesture can be expressed using CN{SM{Θ,∆α}}

or CN{SM{Θ,∆Vx,∆Vy,∆Vz}}

→−

encoded from CN{SM{Θ,∆V }}. C denotes collection state. Initial

samples are used as ground truth data. As for generative

network, we employ two random noises Noiα, Noiv for angle

based model and vector based model respectively according to

different state step length. Input noise variables are shown as

Eq.(4).

 Noiα

(4) Noiv

Where rand(±a) denotes a uniform distributed random real

number between −a and a. We set 5 for Noiα and 1 for Noiv in

this paper. But they can be customized according to different

conditions. Based on general GAN framework, generator can

be optimized by minimizing Eq.(5) and discriminator can be

optimized by maximizing Eq.(6).

 Eλ∼pλ(λ)[log(1 − D(G(λ)))] (5)

Ex∼pdata(x)[log(D(x))] + Eλ∼pλ(λ)[log(1 − D(G(λ)))] (6) p(λ) is a

prior distribution of λ, generator G(λ) maps from the space of

λ to the space of data x. D(·) is the discriminator with a [0,1]

output. The generated discrete data are stored as training sets.

Fig.4 shows 4 adjacent keypoint state sequences, each

contains 40 groups of coordinate data selected from the

generated set. As we can see, the position distribution of the

fingertips and the elbow is relatively concentrated, while the

other keypoints distribute in scattering. There are two main

reasons for this result. First, the fingertips and the elbow own

high position confidence, while the others not. Second, GAN

generates data close to real distribution, coordinate error will

not be reduced.

D. Sequence Learning

As for raw datasets, a gesture contains Mx14(14 ∆α) and

Mx19x3(19 ∆v and 3 components). Each variable has its own

state shift mode in M frames. Nevertheless, variables of other

classes are also related to the estimated state one, especially

those in the same class. In order to quantify this relationship,

we define some assumptions. First, the variables not in the

same class(e.g.∆E0 and ∆F0) has no effect on prediction.

Second, the variables that owns the same class and same state

have an IF (influence factor) of 0.5. Third, the variables in the

same class but different states have an sum average IF as 0.5.

Let β denote IF, β0 denote IF of the main stem, then we train

the network using Eq.(7)-Eq.(11).

zt = σ(Wz · [ht−1,xt(Θj,i)]) (7)

rt = σ(Wr · [ht−1,xt(Θj,i)]) (8)

h˜t = tanh(Wh˜ · [rt ∗ ht−1,xt(Θj,i)]) (9)

ht = (1 − zt) ∗ ht−1 + zt ∗ h˜t (10)

yt(Θj,0) = σ(W0 ∗ βi ∗ yt(Θj,i)) (11)

Eq.(7)-Eq.(10) are general GRU network. zt,rt,h˜
t,ht denote

update gate, reset gate, candidate activation and activation

layer respectively. Θj,i denotes the ith keypoint in the jth class of

Θ, and β0 = 0.5 when i = 0.

Based on the trained sequence prediction model, a missing

keypoint at a certain state can be estimated by several of its

previous states, and some states of other keypoints in the same

class, as illustrated in Eq.(12).

 Smissing = X βi · Model(Si) (12)
len(Θj)

Here βi denotes weighted influence factor, and the state S

includes discrete coordinates and angles.

E. Normalize gesture sequence

We assume that a complete gesture contains 30 frames.

However, it’s very difficult to finish a gesture exactly using only

one second. Indefinite-length actual gesture sequence cannot

perform gesture recognition because each frame is not a

oneto-one correspondence. Here we propose a method based

on the longest common substring to normalize actual gesture

sequences. First we encode coordinator vector and angle into

specific categories, we adopt 0.2 for coordinator vector and 20

degree as step length. For example, if a keypoint owns

(0.18,1.06,0.92) and (144◦), it will be encoded as (Av,Fv,Ev)

and (Ha). The whole encoding relationship is shown in Table I.

The first and forth line denote the range of
TABLE I ENCODING RELATIONSHIP

0∼0.2 0.2∼0.4 0.4∼0.6 0.6∼0.8 0.8∼1.0

0∼20◦ 20∼40◦ 40∼60◦ 60∼80◦ 80∼100◦

A B C D E

1.0∼1.2 1.2∼1.4 1.4∼1.6 1.6∼1.8 1.8∼2.0

100∼120◦ 120∼140◦ 140∼160◦ 160∼180◦ 180∼200◦

F G H I J

coordinator vector. The second and fifth line denote the range

of angles, the third and sixth line are encoded categories. All of

the experiment data are within the maximum value we settle,

which can ensure no invalid encoding definition.

Fig. 5. Longest common substring normalization.

There are mainly three types of cases, actual gesture

contains fewer frames, same frames and more frames than

template. As for the same frame cases, we can use the frames

data directly. As for the other two cases, we normalize the

sequence using proposed method shown in Fig.5. When a

gesture is performed slowly and contains more frames,

captured realtime sequence shows like ”More frames”.

First ”A”,”B”,”B” in the template can find corresponding unit in

the ”More frames”. But ”D” cannot hit a corresponding ”D” in

the same position. Then we try to hit ”D” in the last recorded

index of ”More frames”, shift to the next position until the hit

is successful and we record this hit index. As for ”G”, it can’t hit

success in the same position either. The current recorded index

is ”D”, so shift to the next position until ”G” can hit success.

When a gesture contains fewer frames, typical example shows

like ”Few frames”. As for the second ”B” in the template, it

cannot hit success, so hit the last recorded index and succeed.

In this case, insert a new ”B” in the corresponding position. As

for ”G”, it does not exist in the captured sequence, insert a new

element in the same position and the element is the last

recorded element. Traverse the template according to this rule

and we can get output like ”ABBDGEF...CD”

and ”ABBDDEF...CD”, it is different with these two outputs.

Even though, normalized sequences are much more similar to

the templates compared to captured real-time sequence.

F. Dynamic matching and gesture recognition

Matrix sequence could be completed using trained

prediction model. However, current state and its last M − 1

states cannot be used to perform gesture recognition since

they may belong to two different gestures. Here we propose a

sliding window method to match candidate sequence with the

defined gesture templates dynamically. First, we catch 1.5M

frames of data and set that more than 0.5M frames are

required to 1: Initialize cursor=-M, error E, mean error ME, map

V

2: repeat

N 3:

6: Searching templates for corresponding gesture of the

minimum value ME, push them into V , let cursor++

7: until cursor=0

8: Define relative error RE, iterate through V

9: , calculate the relative error under two

strategies(coordinate and angle), the gesture owning the

minimum value is identified as current gesture

Here Ndim denotes the dimension of a frame, and values 19x3

for coordinate vector and 14 for angle respectively. Confi,j

denotes the confidence of jth sub-state in the ith frame as

mentioned in Sec.IV-B. cursor denotes a supplementary

variable, varying from −M to 0, ensuring more than 0.5M

frames of data are used to recognize hand gestures.

The process stores the past 1.5M frames of raw data relative

to current state, then traverse cursor from −M to 0. This is the

kernel of this sliding method. As for each state, we use the

minimum average Euclidean distance between K raw data and

last K states of gesture templates to represent mean error, and

save the minimum mean error and the corresponding gestures.

Two groups of error data can be obtained at the end of the

traversal. In order to maintain the judgment consistency under

coordinate and angle group, we calculate the proportion of

each absolute mean error in the total error. Find the minimum

relative error, its corresponding gesture denotes the current

destination gesture.

V. EXPERIMENT

In this section, we give an example to apply our method, and

introduce the detailed experiment setup.

A. Experimental Design

As we mention in the Sec.IV, there are some undetermined

parameters, here we set M=30, Ndim=19x3 for coordinate and

=14 for angle, Nsample = 50.

B. Experiment setup

As illustrated in Fig.6, we define 11 types of representative

hand gestures, which covers typical finger characteristics. Fig. 6.

Defined 11 kinds of representative hand gestures..

Fig. 7. Real-time gesture recognition results.(a)hold,(b)swipe right,(c)rotate
left,(d)click.

First, we collect 50 samples for each gesture, extract

coordinate vectors and angles as raw dataset, then use two

defined GANs to generate 5 × 103 samples respectively as

training set. The preprocessing phase includes keypoint

information extraction and discrete data generation, while the

sequence learning part includes discrete state sequence

learning and model optimization. The model training process

to coordinate vector and angle are in parallel. We use a

GPU(NVIDIA GTX1050) to accelerate real-time RGB and depth

data calculation, to ensure 30FPS.

VI. RESULT

In this section, we present experiment results, including

recognition accuracy under different conditions, comparison

with other recent methods, to show superiority of our

proposed method.

A. Real-time gesture recognition result

As shown in Fig.7, we give 4 typical gesture recognition

results, (a)-(d) represent hold, swipe right, rotate left and click

corresponding category. Update the center of each categories

and repeat until all sequences are traversed. Detailed

algorithm is shown in Algorithm.2. Compared to the red

histogram in Fig.8, we can see that dataset is much more

accurate after validation.

Algorithm 2 Validation algorithm

Require: Raw dataset

Ensure: Validated dataset

1: repeat

approach.

respectively.

B. Dataset validation

As shown in Fig.8, raw generated dataset is not ideal to train

sequence model, the error of the dataset will accumulate to

Fig. 9. Recognition accuracy of three typical hand gestures under different actual frames, a)Coordinator-only approach, b)Angle-only approach, c)Joint

Fig. 8. Dataset validation of defined gestures.

2: Initialize 11 center clusters C i

3: Take one record sequence Seq cand. and calculate distances

to C i , update Seq cand. to corresponding category of the

minimum distance

4: Update 11 center clusters C i

 5: until All record sequences are traversed

C. Self - Comparison

1) Non - Normalization vs Normalization: First we try with

non - normalization approach. We assume that a hand gesture

is composed of 30 frames and implement our method strictly

based on 30 frames of data. However, actual hand gestures

the following steps. Especially for ”pick” and ”rotate left”. The

validation percentage is very low. To solve this problem and

validate our dataset, we adopt KNN to validate incorrect data.

First we find the center of each gesture dataset in the high

dimensional space. Then assuming one sequence Seqcand.

belongs to ClassA and the distance to the center is Seqcand.,A, we

calculate it’s all Euclidean distances Seqcand.,class to the center of

other classes. If Seqcand.,class ≤ Seqcand.,A, then label Seqcand. to

usually vary for different environments. In this case, if a

gesture is very fast completed and has Nless(< M) frames, we

assume no hand movements in residual data(M − Nless). These

residual data are very close to 0 and have no function on

gesture recognition. Therefore, we can map Nless frames to 30

to satisfy template matching using interpolating function. This

alternative way is inevitable to bring some errors due to

interpolating. If a gesture is performed slowly and has Nmore(>

M) frames, we can only capture part of the gesture data due

to that we have no prior knowledge to know when the gesture

ends. So, we use incomplete data to perform gesture

recognition.

As shown in Fig.9, actual frames of a gesture denote the

frame number when a gesture is completed. Here we

take ”push”, ”hold” and ”rotate left” for example, each gesture

is performed under coordinator-only mode, angle-only mode

and joint mode, traversing 21-35 frames. We can see that the

region with the highest precision is concentrated in the 30±1

frames, typically 30 frame owns the peak recognition accuracy.

Besides, the influence of few frames on recognition accuracy

is smaller than more frames.

Then we use normalization approach, the result is shown in

Fig. 9. We can see that normalized gesture sequence has

higher recognition accuracy than non-normalized. Besides, our

proposed method performs much better on ”More frames”.

There is no obvious decline in accuracy when actual frames are

more than 30.

2) Occluded frame number: Occluded frame number is an

important influence factor in gesture recognition, the ideal

state is that all of the gesture frames can be captured. However,

occlusion cannot be avoided in practical situations. As we

settle in proposed dynamic matching method, least number

required to perform gesture recognition should be more than

15 frames. Therefore, we observe the change of accuracy rate

with 0 − 15 frames of data occlusion.

gesture while there is a cup (we use cup as occlusion object in

this experiment) in the line-of-sight between the Kinect sensor

and hands. Besides, we control the distance between the cup

and the hands to ensure that there are more than 15 valid

frames for each gesture. In this experiment, we don’t record

how many valid frames per movement, but just record the

number of correctly identified. This is taken as average

recognition accuracy.

As shown in Fig.10(a), the experiment is performed on ”push”

gesture based on joint recognition approach after

normalization. We can find that with the increase of occlusion

frames, the gesture recognition accuracy drops much faster.

When it’s over 15 frames, we stop recognizing gestures due to

insufficient information. The other gestures owns a similar

trend of accuracy change. Our method has better performance

and robustness in low occlusion environment but also works in

some high occlusion cases.

To validate the performance of our proposed method in

We compare our approach with DeepPrior [29] and M. M. et

al. [11] in recognition accuracy and time efficiency. These two

methods got promising results under occlusion. DeepPrior

used Convolutional Neural Network approach and M. M. et al.

used joint model-based and data-driven approach. But they

are both designed for static gesture recognition. In order to

compare the performance of dynamic gestures under the

same conditions, we capture 30 frames of static data and form

D. Comparison with related methods

defined dynamic gestures. As for each captured keypoints

Fig. 10. (a) Recognition accuracy under different number frames of occlusion. (b) Average recognition accuracy of each gesture in 100 times.

occluded environment, we repeat 100 movements for each sequence, we calculate its 3D Euclidean distances to 11

As shown in Fig.10(b), we notice that except ”hold”,”rotate

left” and ”rotate right”, the other gestures can reach an high

accuracy over 90%, and the four gestures also have an

acceptable accuracy over 85%. This division may be caused by

that each gesture depends on different keypoints and their

corresponding number, some keypoints are easy to capture.

For example, as for ”click”, it’s highly dependent on the index

finger, and the index finger is independent from the other

keypoints and won’t cause much errors. As for ”rotate

left/right”, all keypoints are involved in gesture recognition and

occupy a similar proportion. Some keypoints of data loss due

to occlusion will bring more errors.

templates. Its category is determined by the minimum

distance. we calculate and compare the average of the

minimum distances of each gesture.

As illustrated in Fig.11(i), DeepPrior owns the largest

average distances. This means it has the lowest accuracy. The

reason could be that it does not have generalization on the

diversity of gestures, especially on dynamic gestures. M. M. et

al. is better than DeepPrior but still worse at sequence

recognition. Also, since we supplement missing data and

perform sequence normalization, actually we do not

necessarily use 30 frames to identify a gesture. As shown in

Fig.11. (ii), our approach is much better than DeepPrior and M.

M. et al..

VII. CONCLUSION

In this study, we propose a robust customized method for

real-time hand tracking and gesture recognition with occlusion,

which is very useful in practical interaction-based industrial

applications. First, we analyze the hand kinematics and

generate a key-point based representative model with relative

coordinate vectors. Next, for deficient labeled data with

occlusion, we introduce GAN to create a complete raw discrete

sequence of hand movements. Furthermore, we build a time

series prediction method in order to estimate the locations of

key points on hands. At last, a sliding window matching

method is applied to recognize hand gesture. In our

experiment, our proposed method has higher recognition

accuracy and less time cost than DeepPrior and M. Madadi et

al.. Also, our method only needs less data to define and

recognize a defined hand gesture. This solves the problem of

insufficient data from practice.

It remains some improvements we can do in the future work.

We will focus on more accurate extraction of key points, this

will help improve the generated datasets greatly.

REFERENCES

[1] C. Qian, X. Sun, Y. Wei, X. Tang, and J. Sun, “Realtime and robust hand
tracking from depth,” in 2014 IEEE Conference on Computer Vision and
Pattern Recognition(CVPR), June 2014, pp. 1106–1113.

[2] T. Simon, H. Joo, I. Matthews, and Y. Sheikh, “Hand keypoint detection in
single images using multiview bootstrapping,” in 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), July 2017, pp. 4645–
4653.

[3] J. Taylor, L. Bordeaux, T. Cashman, and B. Corish, “Efficient and precise
interactive hand tracking through joint, continuous optimization of pose
and correspondences,” ACM Trans. Graph., vol. 35, no. 4, pp. 143:1–
143:12, Jul. 2016.

[4] L. Ballan, A. Taneja, J. Gall, L. Van Gool, and M. Pollefeys, Motion Capture
of Hands in Action Using Discriminative Salient Points. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 640–653.

[5] C. Choi, S. Ho Yoon, C.-N. Chen, and K. Ramani, “Robust hand pose
estimation during the interaction with an unknown object,” in The IEEE
International Conference on Computer Vision (ICCV), Oct 2017.

[6] J. Tompson, M. Stein, Y. Lecun, and K. Perlin, “Real-time continuous pose
recovery of human hands using convolutional networks,” ACM Trans.
Graph.(TOG 2014), vol. 33, no. 5, pp. 169:1–169:10, Sep. 2014. [Online].
Available: http://doi.acm.org/10.1145/2629500

[7] A. Erol, G. Bebis, M. Nicolescu, R. D. Boyle, and X. Twombly, “Visionbased
hand pose estimation: A review,” Computer Vision and Image
Understanding(CVIU 2007), vol. 108, no. 1-2, pp. 52–73, Oct.

2007. [Online]. Available: http://dx.doi.org/10.1016/j.cviu.2006.10.012
[8] I. Oikonomidis, N. Kyriazis, and A. A. Argyros, “Markerless and efficient

26-dof hand pose recovery,” in Proceedings of the 10th Asian Conference
on Computer Vision - Volume Part III, ser. ACCV’10. Berlin, Heidelberg:
Springer-Verlag, 2011, pp. 744–757. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1966049.1966108

[9] P. Li, H. Ling, X. Li, and C. Liao, “3d hand pose estimation using
randomized decision forest with segmentation index points,” in
Proceedings of the 2015 IEEE International Conference on Computer
Vision (ICCV), ser. ICCV ’15. Washington, DC, USA: IEEE Computer Society,
2015, pp. 819–827. [Online]. Available:
http://dx.doi.org/10.1109/ICCV.2015.100

[10] T. Y. Chen, P. W. Ting, M. Y. Wu, and L. C. Fu, “Learning a deep network
with spherical part model for 3d hand pose estimation,” in 2017 IEEE
International Conference on Robotics and Automation (ICRA), May 2017,
pp. 2600–2605.

[11] M. Madadi, S. Escalera, A. Carruesco, C. Andujar, X. Bar, and J. Gonzlez,
[12] A. Sinha, C. Choi, and K. Ramani, “Deephand: Robust hand pose
estimation by completing a matrix imputed with deep features,” in 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2016, pp. 4150–4158.

[13] L. Ge, H. Liang, J. Yuan, and D. Thalmann, “Robust 3d hand pose
estimation in single depth images: From single-view cnn to multiview
cnns,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR 2016), June 2016, pp. 3593–3601.

[14] M. Oberweger, P. Wohlhart, and V. Lepetit, “Training a feedback loop for
hand pose estimation,” in Proceedings of the 2015 IEEE International
Conference on Computer Vision (ICCV), ser. ICCV ’15. Washington, DC,
USA: IEEE Computer Society, 2015, pp. 3316–3324. [Online]. Available:
http://dx.doi.org/10.1109/ICCV.2015.379

[15] X. Deng, S. Yang, Y. Zhang, P. Tan, L. Chang, and H. Wang, “Hand3d: Hand
pose estimation using 3d neural network,” CoRR, vol. abs/1704.02224,
2017. [Online]. Available:
http://arxiv.org/abs/1704.02224

[16] L. Ge, H. Liang, J. Yuan, and D. Thalmann, “3d convolutional neural

networks for efficient and robust hand pose estimation from single depth
images,” in 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), July 2017, pp. 5679–5688.

[17] X. Zhou, Q. Wan, W. Zhang, X. Xue, and Y. Wei, “Modelbased deep hand
pose estimation,” in Proceedings of the TwentyFifth International Joint
Conference on Artificial Intelligence, ser. IJCAI’16. AAAI Press, 2016, pp.
2421–2427. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3060832.3060960

[18] J. S. Supancic, G. Rogez, Y. Yang, J. Shotton, and D. Ramanan,
“Depthbased hand pose estimation: Data, methods, and challenges,” in
2015 IEEE International Conference on Computer Vision (ICCV), Dec 2015,
pp. 1868–1876.

[19] M. Oberweger, G. Riegler, P. Wohlhart, and V. Lepetit, “Efficiently creating
3d training data for fine hand pose estimation,” in 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2016, pp.
4957–4965.

[20] P. Panteleris and A. Argyros, “Back to rgb: 3d tracking of hands and
handobject interactions based on short-baseline stereo,” in The IEEE
International Conference on Computer Vision (ICCV 2017), Oct 2017.

[21] T. E. de Campos and D. W. Murray, “Regression-based hand pose
estimation from multiple cameras,” in 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’06), vol.
1, June 2006, pp. 782–789.

[22] I. Oikonomidis, N. Kyriazis, and A. A. Argyros, “Full dof tracking of a hand
interacting with an object by modeling occlusions and physical

constraints,” in 2011 International Conference on Computer Vision(ICCV),
Nov 2011, pp. 2088–2095.

[23] D. Zhang, H. Maei, X. Wang, and Y. Wang, “Deep reinforcement learning
for visual object tracking in videos,” CoRR, vol. abs/1701.08936, 2017.
[Online]. Available: http://arxiv.org/abs/1701.08936

[24] A. Milan, S. H. Rezatofighi, A. Dick, I. Reid, and K. Schindler, “Online
multitarget tracking using recurrent neural networks,” in AAAI
Conference on Artificial Intelligence(AAAI), 2017.

[25] J. Donahue, L. A. Hendricks, M. Rohrbach, S. Venugopalan, S.
Guadarrama, K. Saenko, and T. Darrell, “Long-term recurrent
convolutional networks for visual recognition and description,” IEEE
Transactions on Pattern Analysis and Machine Intelligence(TPAMI), vol.
39, no. 4, pp. 677–691, April 2017.

[26] P. Molchanov, X. Yang, S. Gupta, K. Kim, S. Tyree, and J. Kautz, “Online
detection and classification of dynamic hand gestures with recurrent 3d
convolutional neural networks,” in 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2016, pp. 4207–4215.

[27] L. Zhang, G. Zhu, P. Shen, J. Song, S. Afaq Shah, and M. Bennamoun,
“Learning spatiotemporal features using 3dcnn and convolutional lstm

for gesture recognition,” in The IEEE International Conference on
Computer Vision (ICCV), Oct 2017.

[28] G. Moon, J. Y. Chang, and K. M. Lee, “V2V-PoseNet: Voxel-to-Voxel
Prediction Network for Accurate 3D Hand and Human Pose Estimation
from a Single Depth Map,” ArXiv e-prints, Nov. 2017.

[29] M. Oberweger, P. Wohlhart, and V. Lepetit, Hands Deep in Deep Learning
for Hand Pose Estimation, 2015, pp. 1–10.

Fig. 11. Comparison of average distance error and recognition time of DeepPrior, M. M. et al. [11] and our method.
“Occlusion aware hand pose recovery from sequences of depth images,”

in 2017 12th IEEE International Conference on Automatic Face Gesture

Recognition (FG 2017), May 2017, pp. 230–237.

