
RECENT ADVANCES IN PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE

Adaptively stepped SPH for fluid animation based
on asynchronous time integration

Xiaojuan Ban1 • Xiaokun Wang1 • Liangliang He 1
• Yalan Zhang 1

•

Lipeng Wang1

Received: 12 November 2015 / Accepted: 25 March 2016

� The Natural Computing Applications Forum 2016

Abstract We present a novel adaptive stepping

scheme for SPH fluids, in which particles have their own

time steps determined from local conditions, e.g. courant

condition. These individual time steps are constrained for

global convergence and stability. Fluid particles are then

updated asynchronously. The approach naturally allocates

computing resources to visually complex regions, e.g.

regions with intense collisions, thereby reducing the overall

computational time. The experiments show that our

approach is more efficient than the standard method and the

method with globally adaptive time steps, especially in

highly dynamic scenes.

Keywords Fluid simulation � Adaptive SPH � Individual
time steps � Asynchronous

1 Introduction

Physics-based fluid simulations are widely used, for

example, in movies, virtual realities and even in computer

games, despite the difficulty due to the complexity of fluid

behavior. Lagrangian methods based on smoothed particle

hydrodynamics (SPH), which have been gaining increased

interest in graphics community, are able to successfully

simulate complex scenes with versatile effects [1]. To

produce appealing visual results with small-scale details,

SPH fluids demand a high discretization resolution, i.e.,

large number of particles. The computational expenses of

simulating millions of particles are, however, too large for

practical use [2]. To cope with the increasing demand for

more detailed fluids, adaptive methods, that adapt either the

spatial resolution or the sampling in time, have been pro-

posed. They follow the idea to allocate computing

resources to regions with complex flow behavior.

Space adaptive methods [3–5] dynamically exchange

particle sets. Large particles are divided into smaller ones

when a high discretization resolution is needed, and vice

versa. In contrast to homogeneous fluids, these adaptively

sampled particle fluids use fewer particles to produce the

similar details and thus are more efficient. However, diffi-

culties exist in reproducing quantity when refining particles.

Furthermore, while neighborhood searching is usually the

bottleneck [2], non-uniform smoothing radii make it slower

since hierarchical data structures such as kd-trees have to be

used [1].

As an alternative to adaptive spatial discretization, time

adaptive methods adapt the sampling distance in time.

Globally adaptive time-stepping methods [6–8] use a single

time step adjusted in each simulation step with respect to the

CFL condition [6] for all particles. Since globally adaptive

time steps update all particles according to the particle that

has the current smallest time step, it is not the most efficient.

Locally adaptive time-stepping methods [3, 9, 10] use dif-

ferent time steps for particles. In [3], each particle evaluates

forces only when needed, according to its current individual

time step determined from individual stability conditions.

In this paper, we adopt the idea of [3] for weakly

compressible SPH (WCSPH) [11]. To make the simulation

Electronic supplementary material The online version of this
article (doi:10.1007/s00521-016-2286-8) contains supplementary
material, which is available to authorized users.

& Xiaokun Wang

wang1xiao2kun3@163.com

Xiaojuan Ban

banxj@ustb.edu.cn

1 School of Computer and Communication Engineering,

University Science and Technology Beijing, Beijing, China

123

Neural Comput & Applic

DOI 10.1007/s00521-016-2286-8

http://dx.doi.org/10.1007/s00521-016-2286-8
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-016-2286-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-016-2286-8&domain=pdf

of stiff fluids stable, small time steps are spread to neighbor

particles in order to respond to strong shocks. The proposed

simulation is very similar to the globally adaptive time-

stepping methods, except performing neighborhood

searching and forces evaluating for only fraction of all

particles in every simulation step. The position, velocity

and density of the particle that currently does not need

force evaluations are interpolated. We show that the pre-

sented simulation algorithm naturally allocates computing

resources to visually complex regions with intense colli-

sions (Fig. 1) and thus reduces the computational time.

2 Related work

Since the SPH concept [12] was first introduced to graphics

community by the work of Mathieu [6], it has become an

active topic. Matthias et al. [7] first applied the SPH

method to interactive fluid simulation. Markus et al. [13]

use a stiff equation of state (EOS) for weakly compressible

SPH (WCSPH). To enforce incompressibility efficiently,

iterative solvers are proposed including predictive-correc-

tive incompressible SPH (PCISPH) [12], local poisson SPH

(LPSPH) [14] and implicit incompressible SPH (IISPH)

[15]. These methods are, however, in the cost of increasing

the complexity of programming.

Algorithms to handle the fluid–rigid coupling problems

were proposed [16, 17]. In order to obtain a satisfied sur-

face, [18–21] made efforts on surface reconstruction. In

additional, [22, 23] revised tension model to get the details

of surface. Since there are almost no data dependencies,

SPH methods generally map well to parallel architectures.

[2] presented a parallel SPH implementation on multi-core

CPUs, and [24, 25] implemented the SPH on GPUs. [26,

27] used the CPU/GPU asynchronous computing to

improve the efficiency of the method. [28, 29] employed

motion blur, particle blending texture mapping, and other

computer graphics techniques to achieve real-time effect.

[30] presented a sleepy algorithm to improve efficiency by

ignoring particles appearing to be at rest.

For high-resolution simulations, many adaptive methods

have been presented reducing the computational cost. Space

adaptive methods, e.g. adaptively sampling methods [3, 4],

multi-resolution methods [31] or multi-scale method [5, 32],

change local resolution, i.e., particle size, dynamically or

couple multiple resolution levels to reduce the number of

particles. To reduce the error introduced when changing

particle configurations, temporal blending approach [33]

smoothly changes quantity fields alongwith simulation time.

As an alternative to reducing the number of particles,

many techniques try to optimize the time steps, either

globally or locally. Since the convergence of SPH simu-

lations is bound to CFL condition, globally adaptive time-

stepping methods use a single optimal time step for each

simulation step. [8] proposed an adaptive time-stepping

method for PCISPH, in which the time steps are changed

smoothly to overcome stability problems. The idea of using

individual time step with each particle was first proposed in

[3] for the simulation of deformable objects. In [10], the

movement of inactive particles is temporarily restricted. [9]

proposed a block-based regional time-stepping method

using different time steps for different regions. Compared

to [9], our approach uses individual time steps for each

particle which is similar to [3] with careful selected sta-

bility conditions.

A good introduction into SPH fluid simulation is given

in the state-of-the-art report of Markus et al. [1].

3 Methodology

3.1 Basic SPH

In SPH, a fluid is consisted by a set of particles. Each

particle i has several attributes, namely

mi Mass

qi Density

pi Pressure

xi Position

vi Velocity

When the particles flow with the fluid, the relations

between these attributes are governed by governing equa-

tions. For WCSPH [11, 12], the governing equations are

Fig. 1 Asynchronous time integration. The starting points of the line

segments are update time, and the length of line segments iterate

individual time step

Neural Comput & Applic

123

qi ¼
X

j

mjWij ð1Þ

pi ¼
q0c

2
S

c
qi
q0

� �c

�1

� �
ð2Þ

dxi
dt

¼ vi ð3Þ

dvi
dt

¼ �
X

j

mj

pi

q2i
þ pj

q2j

 !
rWij þ g ð4Þ

where Wij ¼ W xi � xj; h
� �

is the kernel function with h the

smooth radii, j iterates all the neighbors, q0 ¼ 1000; cS; c ¼ 7

are constants,r is the gradient operator and g is the external

force. For the other force term, e.g. viscous force and surface

tension force, we can add them on the right side of Eq. (4). In

our implementation, we use the viscous force and kernels

presented in [6] and rigid–fluid couplingmethods of [16]. The

Basic SPH method uses the semi-implicit Euler numerical

integration scheme, which is illustrated in Algorithm 1.

Algorithm 1 Basic SPH
1: while animating do
2: for all particle i do
3: find neighbors j

4: for all particle i do
5: compute ρi, pi (e.g. Eq. (1), (2))
6: for all particle i do
7: compute forces (e.g. Eq. (4))
8: for all particle i do
9: vi (t + Δt) = vi (t) + Δt dvi

dt
(t)

10: xi (t + Δt) = xi (t) + Δtvi (t + Δt)
11: t = t + Δt

The density derivative is given by

dqi
dt

¼
X

j

mjvijrWij ð5Þ

where vij ¼ vi � vj. We use density derivative to interpo-

late density.

3.2 Globally adaptive time stepping

The time step of SPH fluids must be constrained for

numerical stability and convergence. The Courant–Frie-

drich–Levy (CFL) condition

DtCFL � kv
h

vmax

� �
ð6Þ

ensure that numerical propagation speed is higher than

physical propagation speed, where vmax ¼ maxi jvij jjð Þ is

the maximum of the particle velocities, coefficient kv\1.

In addition, particle forces have to be considered

Dtf � kf

ffiffiffiffiffiffiffiffi
h

fmax

s !
ð7Þ

where fmax ¼ maxi j dvi
dt

���
���j

� 	
denotes the maximum force per

unit mass of particles, kf\1. In [8], kv ¼ 0:4; kf ¼ 0:25 are

used for PCISPH. Since WCSPH uses a stiff EOS which

restricts the time step [2, 34], we use kv ¼ 0:1; kf ¼ 0:05

for globally adaptive time-stepping method. Instead of

using a constant time step in Algorithm 1, we can now

adjust it dynamically by

Dt ¼ min DtCFL;Dtfð Þ: ð8Þ

4 Individual time stepping

In SPH fluids, each particle only interacts with its neigh-

bors. The convergence of the simulation of each particle is

determined locally. In our method, the individual time

stepping of each particle is determined by the local con-

dition in its smooth radii. Allowing particles to have dif-

ferent time steps is more efficient than using a globally

restricted time step for all particles. Regarding the calcu-

lation speed, the algorithm is two times larger compared to

globally adaptive time-stepping algorithm and six times

larger compared to WCSPH.

We propose a novel asynchronous time integration

algorithm based on particle’s individual time stepping. The

algorithm has the same skeleton as the globally adaptive

time-stepping methods do. The main difference is that, at

every time step, only the active particles will be updated.

For those inactive particles, their physical quantities are

obtained by linear interpolation.

4.1 Time steps

Our individual time-stepping method computes time step

for each particle i according to

Dti ¼ min
j

kv
h

jvj
�� ��j

; kf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h

jdvj=dt
�� ��j

s !
ð9Þ

where j iterates over all neighbors. In contrast to [3], we

take the neighbors into account, which make the algo-

rithm stable for stiff fluids. The proposed method, how-

ever, requires small coefficients due to the asynchrony.

We use kv ¼ 0:05; kf ¼ 0:025; i.e., half of that of globally

adaptive time-stepping method. Fortunately, this restric-

tion will be counteracted by the fact that the proposed

method updates only a small fraction of all particles in

every time step.

Neural Comput & Applic

123

4.2 Asynchronous update

As each particle has its own time step, we need to carry out

asynchronous time integration for the algorithm. To avoid

the computing cost, the time step is determined by current

minimize individual time step

Dt ¼ min
i

Dtið Þ ð10Þ

where Dti is computed by Eq. (9).

The particle i will be updated when it meets the

condition

tlasti þ Dti\tsim ð11Þ

where tlasti iterates the last time particle i updated, tsim
iterates the system time. According to Eq. (9), when the

system time is larger than the individual time step, the

particle i will be set as active particle and be updated.

SPH method algorithm usually adopts the semi-im-

plicit Euler numerical integration (see Algorithm 1 line

9–10). To suit for asynchronous update, the semi-im-

plicit Euler numerical integrations have the following

form:

vi t
last
i þ Dt
� �

¼ vi t
last
i

� �
þ Dt ai t

last
i

� �
ð12Þ

xi t
last
i þ Dt
� �

¼ xi t
last
i

� �
þ Dt vi t

last
i þ Dt
� �

ð13Þ

For inactive particles, the operation is equal to a interpo-

lating, while for active particles, the operation is equal Alg.

1, a semi-implicit Euler numerical integration.

Asynchronous time integration is shown in Fig. 1. At

t1, the particles 1, 2 and 3 are activated and updated. The

particle 3 has the shortest individual time step, which

determines global time step. After this time step, the

particles 3 and 5 are activated. The time step of particle

5 is shortest and set as global time step. At t3, the par-

ticles 2, 4 and 5 are activated. From here we can see

that, in every global time step, only active particles are

updated.

In order to synchronize the animation every Dtframe;

[3] restricted the time step Dti to Dtframe=2
q (q is a

integer), which decreases the Dti. For example

Dtframe ¼ 32, Dti ¼ 7, finally, Dti will be clamped to 4.

We found that increasing the synchronize times can

improve the stability of the simulation, as shown in

Fig. 7. However, the small time steps cost more com-

putational time. So we propose a simple partial syn-

chronization mechanism. The particles that have the

same value of bDti=Dtsimc will be synchronized, which

depends on an assumption that the Dtsim is a constant in

a short time window (i.e., Dti). Experiments show that

this mechanism does not add constraints on the Dt and
improves the efficiency, as shown in Table 1.

4.3 Algorithm

Our individual time-stepping algorithm is illustrated in

Algorithm 2. In our algorithm, each particle i maintains a

few additional variables

dqi
dt

Density derivative

Dti Time step

Dtrawi Raw time step

tlasti
Last updated time

Algorithm 2 Individual time stepping for SPH
1: while animating do
2: select active
3: for all active particle i do
4: find neighbors j

5: for all particle i do
6: if active then
7: compute ρi, pi (e.g. Eq. (1), (2))
8: else
9: interpolate ρi, pi using dρi

dt

10: for all active particle i do
11: compute forces (e.g. Eq. (4))
12: compute dρi

dt
(e.g. Eq. (5))

13: Δtraw
i = min

(
λv

h
‖vi‖ , λf

√
h

‖dvi/dt‖
)

14: tlast
i = tsim

15: for all particle i do
16: Δti = min

j

(
Δtraw

j

)

17: Δtsim = min
i

(Δti)

18: for all particle i do
19: Δt = tsim + Δtsim − tlast

i

20: vi tlast
i + Δt

)
= vi tlast

i

)
+ Δt dvi

dt
tlast
i

)
21: xi tlast

i + Δt
)
= xi tlast

i

)
+ Δtvi tlast

i + Δt
)

22: tsim = tsim + Δtsim

The algorithm has the same skeleton as the globally

adaptive time-stepping methods do. The key difference is

that for only the active particles neighborhood searching

and forces evaluating are performed. Particle i is active if

tlasti þ Dti\tsim. In line 16, small time steps are spread to

neighbors, which lets the simulation respond to shocks. In

SPH method, neighbor particles’ density, position and

velocity are necessary for calculating the density and for-

ces, and therefore these attributes of inactive particles need

Table 1 Comparison of efficiency on whether using the partial

synchronize mechanism

Partial sync Total comp. time (min) Avg. Dtsim (avg. active pct.)

No 31 0.21 ms (28 %)

Yes 27 0.23 ms (31 %)

Neural Comput & Applic

123

to be interpolated for the active particles. The density is

interpolated by the density derivative (e.g. linear interpo-

lation) in line 9. Lines 20–21 are a tricky step. For inactive

particles, the operation is equal to a interpolating, while for

active particles, the operation is equal Algorithm 1, a semi-

implicit Euler numerical integration.

We make some observations. First, line 9 and line 16 are

needed to be performed only for neighbors of active par-

ticles. Second, for inactive particles, reusing the last

neighbor lists (e.g. line 16) leads to small errors which are

negligible. Third, since the Algorithm 2 updates particles

asynchronously, the momentum of the system is not con-

served (see Fig. 6).

5 Results and discussion

5.1 Parallel speedup

We set a sense to understand the distribution of computa-

tion of WCSPH algorithm:

The scale of simulation domain 6 m � 6 m � 6 m

The number of fluid particles 22,491

The number of boundary particles 9752

The smooth radii 0.2 m

The radii of fluid particles 0.1 m

The distribution of computation time is shown in

Fig. 2. ‘‘Search’’ is the ‘‘find neighbors’’ step. ‘‘Pressure’’

is the ‘‘compute density and pressure’’ step. ‘‘Force’’ is

the ‘‘compute forces’’ step. As can be seen from the

figure, the neighborhood query adds roughly constant

costs per simulation step and costs 60 % of the total time.

The time of ‘‘compute forces’’ step account for 31 % of

the total time.

The parallel speedup of WCSPH is shown in Fig. 3. The

speedup of mainly computation parts, neighbor query and

force computing, are linear scaling of the thread numbers.

When the thread number adds to 4, which is equal to the

numbers of CPU cores, the speedup is 3.71.

The above results indicate that the optimization of the

computational efficiency of the SPH algorithm should be

focused on the search of the neighboring particles and the

calculation of the force. The particle properties of the SPH

algorithm make it particularly suitable for parallelization.

If we use data parallel architecture on OpenMP, CPU will

get the speedup closely to the number of cores in the case

of very small changes to the program.

5.2 Performance comparison

The proposed simulation algorithm is compared with basic

WCSPH (i.e., with a constant time step) method and also

the global time-stepping method. All timings are given for

an Intel 3.50 GHz CPU with four cores. The simulation

software is parallelized with OpenMP. We reconstruct fluid

surface using anisotropic kernels [18], which used PCA

[35] to modify isotropic kernels. Images were rendered

with Blender. For WCSPH, the density fluctuation is set to

0.01.

Our method naturally allocates computing resources

to complex regions with intense collisions. This is

Fig. 2 The distribution of computation time of WCSPH

Fig. 3 The speedup of each step of WCSPH for different threads after

paralleled

Neural Comput & Applic

123

shown in Fig. 4. The breaking dam scene involves 153K

particles. The corresponding video shows that the par-

ticles collided with the obstacles intensively in the

previous 4 s. The particles in the first row of Fig. 4 are

color-coded. Red color means a less time step. As

expected, the particles colliding with obstacles or other

particles (e.g. drops) have a less time step. From Fig. 5,

we can see that when the individual time step is short,

the percent of the active particles is also a small value

and has the same trend with the time step. These are

expected, since less active particles means less compu-

tational time.

The performance measurements and simulation data of

Figs. 1 and 8 are summarized in Table 2. With our method,

the more complex scene can obtain more speedup. Com-

paring to globally adaptive stepping SPH, our method gets

Fig. 4 Breaking dam with obstacles simulated using presented

method (t ¼ 1.2 s, 2.0 s, 4.0 s and 4.84 s). Top Particles colored

according to individual step (red for small dts and white for large dts).

Second row corresponding frames. Third row corresponding frames

simulated using globally adaptive stepping method. Bottom corre-

sponding frames simulated using basic WCSPH

2

4

tim
e

st
ep

 ∆
t si

m
 [s

]

real time t [s]

0
0 1 2 3 4 5 6 7 8

0

50

100

ac
tiv

e
pe

rc
en

t [
%

]

time step
percent

6 x 10-4

Fig. 5 Time step Dtsim and active percent evolution for breaking dam

scene

Neural Comput & Applic

123

a 2.1 times speedup in the scene of stirring pool and gets a

1.5 times speedup in the scene of breaking dam. Compar-

ing to the basic WCSHP, a 6.4 times speedup is gained in

the breaking dam scene. For the avg. Dtsim, the basic

WCSHP has the smallest value. This is because that its

constant time step has to be small enough to handle the

collision part. Comparing to the globally adaptive time-

stepping method, our method’s avg. Dtsim is cut in half,

since we chose the kv and kf is half of the former due to the

asynchrony. In spite of small avg Dtsim, we still obtain a

speedup.

Mlinear ¼
X

i

mivi ð14Þ

Mangular ¼
X

i

xi � xcmð Þ � mivi ð15Þ

The main drawback of our method is non-conservation of

momentum. The momentum results for the breaking dam of

Fig. 1 are depicted in Fig. 6, and the momentum was cal-

culated by Eqs. 14 and 15, where xcm ¼
P

i mixi=
P

i mi is

center of mass. We compare the momentum result with that

of the globally adaptive time-stepping method, as shown in

Table 2 Comparison of individual stepping method and standard SPH methods

Scene Method Total comp. time avg. Dtsim (avg. active pct.) speedup

Breaking dam with 153K #p Constant steps 175 min 0.11 ms �
Globally adaptive 41 min 0.46 ms �
Individual stepping 27 min 0.23 ms (31 %) 1.5 (6.4)

Stirring pool with 1.2M #p Globally adaptive 32.1 h 0.12 ms �
Individual stepping 14.8 h 0.064 ms (29 %) 2.1

⋅
⋅

⋅
⋅

Fig. 6 Evolution of momentum

and error for breaking dam

scene

Neural Comput & Applic

123

Fig. 6. The evolution of momentum shows that the two

methods are almost consistentwith each other. The evolution

of errors shows that ourmethod has tiny errors in the previous

4 s, exactly the time that particles collided with obstacles

fiercely. So our method introduces little error when the scene

is highly dynamic.

Figure 7 shows the comparison of the stability on

whether using the partial synchronize mechanism. The

color of particles indicates the density of particle. Red

means a big value (i.e., [q0), and blue a small value (i.e.,

\q0). From the top figure, we can see that the density,

which directly determines the value of pressure forces, is

oscillating strongly. Since the pressure forces commonly

govern the movement of particles, the oscillation will

introduce the instability into the simulation. The partial

synchronization mechanism can alleviate oscillation obvi-

ously, which is shown in the bottom figure. The corre-

sponding statistics are shown in 1. With the partial

synchronization mechanism, the avg. Dt increases to 0.23

from 0.21 ms. Consequently, we obtain about 10 %

speedup.

5.3 Visual result

The physical behavior and visual results of WCSPH and

our method are compared in Figs. 4 and 8. As is shown in

Fig. 4, the breaking dam scene involves 153K particles.

Fig. 7 Comparison of stability on using the partial synchronize

mechanism (t = 0.75 s of breaking dam scene). Top is without the

partial sync mechanism, while bottom is with the partial sync

mechanism. Red particles qi [q0. Blue particles qi\q0

Fig. 8 Stirring pool scene. A hand interacts with a water pool simulated by 1.2M particles (t = 2.76, 4.8 and 7.88 s): top is the result of

individual time-stepping method. Bottom is corresponding frames simulated using globally adaptive time-stepping method

Neural Comput & Applic

123

The corresponding video shows that the particles collided

with the obstacles intensively in the previous 4 s. It can be

seen that our methods computations are in full agreement

with the WCSPH results with only very minor detail dif-

ferences. Figure 8 shows a more complex scene with 1.2M

particles—a hand stirred the water fiercely. From the side-

by-side comparison of the Globally adaptive time-stepping

SPH, we can see that the visual results of two methods are

in a good agreement (see the videos).

6 Conclusions

We proposed an efficient individual time-stepping method

for SPH fluids. Our method updates neighbors and forces

of particles only when needed, which naturally allocates

computing resources to complex regions. What is more, a

partial synchronize mechanism was proposed, which can

improve the stability and the efficiency of the simulation.

Our method can obtain an obvious speedup when the scene

is complex. Despite the method introducing momentum

error, it does not alter the visual realism, which is

demonstrated in the experiments. Future work would

extend the proposed method to PCISPH [34] or IISPH [15].

Acknowledgments This work was supported by National Natural

Science Foundation of China (Nos. 61272357, 61300074,

61572075) and Fundamental Research Funds for the Central

Universities (FRF-BR-15-058A).

References

1. Ihmsen M, Orthmann J, Solenthaler B, Kolb A, Teschner M

(2014) Sph fluids in computer graphics. In: State-of-the-art report

eurographics, pp 21–42

2. Markus I, Nadir A, Markus B, Matthias T (2011) A parallel SPH

implementation on multi-core CPUs. Comput Graph Forum

30(1):99–112

3. Desbrun M, Cani M-P (1999) Space-time adaptive simulation of

highly deformable substances. Technical Report 3829, INRIA

4. Adams B, Pauly M, Keiser R, Guibas LJ (2007) Adaptively

sampled particle fluids. ACM Trans Graph Proc SIGGRAPH

26(3):48

5. Solenthaler B, Gross M (2011) Two-scale particle simulation.

ACM Trans Graph Proc SIGGRAPH 30(4):81:1–81:8

6. Monaghan JJ (1992) Smoothed particle hydrodynamics. Ann Rev

Astron Astrophys 30:543–574

7. Desbrun M, Cani M-P (1996) Smoothed particles: a new para-

digm for animating highly deformable bodies. In: Eurographics

workshop on computer animation and simulation (EGCAS),

pp 61–67. Springer, Berlin

8. Ihmsen M, Akinci N, Gissler M, Teschner M (2010) Boundary

handling and adaptive time-stepping for PCISPH. In: Workshop

on virtual reality interaction and physical simulation, pp 79–88.

The Eurographics Association

9. Goswami P, Batty C (2014) Regional time stepping for SPH. In:

Eurographics, pp 45–48. The Eurographics Association

10. Goswami P, Pajarola R (2011) Time adaptive approximate SPH.

In: Proceedings of the 8th workshop on virtual reality interaction

and physical simulation, pp 19–28. VRIPHYS

11. Monaghan JJ (1994) Simulating free surface flows with SPH.

J Comput Phys 110(2):399–406

12. Becker M, Teschner M (2007) Weakly compressible SPH for free

surface flows. In: ACM SIGGRAPH/Eurographics symposium on

Computer animation, pp 209–217

13. Muller M, Charypar D, Gross M (2003) Particle-based fluid

simulation for interactive applications. In: ACM SIGGRAPH/

Eurographics symposium on Computer animation, pp 154–159

14. He X, Liu N, Li S, Wang H, Wang G (2012) Local poisson SPH

for viscous incompressible fluids. Comput Graph Forum

31(6):1948–1958

15. Ihmsen M, Cornelis J, Solenthaler B, Horvath C, Teschner M

(2014) Implicit incompressible SPH. IEEE Trans Vis Comput

Graph 20(3):426–435

16. Akinci N, Ihmsen M, Akinci G et al (2012) Versatile rigid–fluid

coupling for incompressible SPH. ACM Trans Graph TOG

31(4):62

17. Becker M, Tessendorf H, Teschner M (2009) Direct forcing for

Lagrangian rigid–fluid coupling. IEEE Trans Vis Comput Graph

15(3):493–503

18. Yu J, Turk G (2013) Reconstructing surfaces of particle-based

fluids using anisotropic kernels. ACM Trans Graph Proc SIG-

GRAPH 32(1):5:1–5:12

19. Bhatacharya H, Gao Y, Bargteil A (2011) A level-set method for

skinning animated particle data. In: Proceedings of the 2011

ACM SIGGRAPH/Eurographics symposium on computer ani-

mation, pp 17–24. ACM

20. Akinci G, Ihmsen M, Akinci N, Teschner M (2012) Parallel

surface reconstruction for particle-based fluids. In: Computer

graphics forum, vol 31, pp 1797–1809. Wiley Online Library

21. ZhouZH,Zhao JW,CaoFL (2013) Surface reconstruction based on

extreme learning machine. Neural Comput Appl 23(2):283–292

22. Akinci N, Akinci G, Teschner M (2013) Versatile surface tension

and adhesion for SPH fluids. ACM Trans Graph Proc SIG-

GRAPH 32(6):182

23. Yu J, Wojtan C, Turk G, Yap C (2012) Explicit mesh surfaces for

particle based fluids. In: Computer graphics forum, vol 31,

pp 815–824. Wiley Online Library

24. Goswami P, Schlegel P, Solenthaler B, Pajarola R (2010) Inter-

active sph simulation and rendering on the GPU. In: Proceedings

of the 2010 ACM SIGGRAPH/Eurographics symposium on

computer animation, pp 55–64. Eurographics Association

25. Valdez-Balderas D, Domnguez JM, Rogers BD, Crespo AJC

(2013) Towards accelerating smoothed particle hydrodynamics

simulations for free surface flows on multi-GPU clusters. J Par-

allel Distrib Comput 73(11):1483–1493

26. Domnguez JM, Crespo AJC, Gesteira MG (2013) Optimization

strategies for CPU andGPU implementations of a smoothed particle

hydrodynamics method. Comput Phys Commun 184(3):617–627

27. Domnguez JM, Crespo AJC, Valdez-Balderas D, Rogers BD,

Gomez-Gesteira M (2013) New multi-GPU implementation for

smoothed particle hydrodynamics on heterogeneous clusters.

Comput Phys Commun 184(8):1848–1860

28. Chen JX, Fu X, Wegman J (1999) Real-time simulation of dust

behavior generated by a fast traveling vehicle. ACM Trans Model

Comput Simul 9(2):81–104

29. Chen JX, Lobo NV (1995) Toward interactive-rate simulation of

fluids with moving obstacles using Navier–Stokes equations.

Graph Models Image Process 57(2):107–116

30. Nie X, Chen L, Xiang T (2014) An efficient sleepy algorithm for

particle-based fluids. Int J Comput Games Technol 2014:1–8

31. Keiser R (2006) Multiresolution particle-based fluids. ETH Dep

Comput Sci 31(6):17971809

Neural Comput & Applic

123

32. Horvath CJ, Solenthaler B (2013) Mass preserving multi-scale

SPH. Pixar Technical Memo 13-04, Pixar Animation Studios

33. Orthmann J, Kolb A (2012) Temporal blending for adaptive SPH.

Comput Graph Forum 31(8):2436–2449

34. Solenthaler B, Pajarola R (2009) Predictive–corrective incom-

pressible SPH. ACM Trans Graph 28(3):40

35. Rosipal R, Girolami M, Trejo LJ et al (2001) Kernel PCA for

feature extraction and de-noising in nonlinear regression. Neural

Comput Appl 10(3):231–243

Neural Comput & Applic

123

	Adaptively stepped SPH for fluid animation based on asynchronous time integration
	Abstract
	Introduction
	Related work
	Methodology
	Basic SPH
	Globally adaptive time stepping

	Individual time stepping
	Time steps
	Asynchronous update
	Algorithm

	Results and discussion
	Parallel speedup
	Performance comparison
	Visual result

	Conclusions
	Acknowledgments
	References

